Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
High-fidelity simulations of the flow around wings at high reynolds numbers
KTH, School of Engineering Sciences (SCI), Mechanics. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW.ORCID iD: 0000-0001-6570-5499
KTH, School of Engineering Sciences (SCI), Mechanics, Stability, Transition and Control. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW.
KTH, School of Engineering Sciences (SCI), Mechanics, Stability, Transition and Control. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW.ORCID iD: 0000-0002-5913-5431
KTH, School of Engineering Sciences (SCI), Mechanics, Stability, Transition and Control. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW.ORCID iD: 0000-0001-7864-3071
Show others and affiliations
2017 (English)In: 10th International Symposium on Turbulence and Shear Flow Phenomena, TSFP 2017, 2017, Vol. 2Conference paper (Refereed)
Abstract [en]

Reynolds-number effects in the adverse-pressure-gradient (APG) turbulent boundary layer (TBL) developing on the suction side of a NACA4412 wing section are assessed in the present work. To this end, we conducted a well-resolved large-eddy simulation of the turbulent flow around the NACA4412 airfoil at a Reynolds number based on freestream velocity and chord length of Rec = 1;000;000, with 5° angle of attack. The results of this simulation are used, together with the direct numerical simulation by Hosseini et al. (Int. J. Heat Fluid Flow 61, 2016) of the same wing section at Rec = 400;000, to characterize the effect of Reynolds number on APG TBLs subjected to the same pressure-gradient distribution (defined by the Caluser pressure-gradient parameter β). Our results indicate that the increase in inner-scaled edge velocity U+e, and the decrease in shape factor H, is lower in the APG on the wing than in zero-pressure-gradient (ZPG) TBLs over the same Reynolds-number range. This indicates that the lower-Re boundary layer is more sensitive to the effect of the APG, a conclusion that is supported by the larger values in the outer region of the tangential velocity fluctuation profile in the Rec = 400;000 wing. Future extensions of the present work will be aimed at studying the differences in the outer-region energizing mechanisms due to APGs and increasing Reynolds number.

Place, publisher, year, edition, pages
2017. Vol. 2
National Category
Fluid Mechanics and Acoustics
Identifiers
URN: urn:nbn:se:kth:diva-218452Scopus ID: 2-s2.0-85033231950OAI: oai:DiVA.org:kth-218452DiVA, id: diva2:1160919
Conference
10th International Symposium on Turbulence and Shear Flow Phenomena, TSFP 2017, Swissotel Chicago, United States, 6 July 2017 through 9 July 2017
Note

QC 20171128

Available from: 2017-11-28 Created: 2017-11-28 Last updated: 2017-11-28Bibliographically approved

Open Access in DiVA

No full text in DiVA

Scopus

Authority records BETA

Vinuesa, RicardoHanifi, ArdeshirHenningson, Dan S.Schlatter, Philipp

Search in DiVA

By author/editor
Vinuesa, RicardoNegi, Prabal SinghHanifi, ArdeshirHenningson, Dan S.Schlatter, Philipp
By organisation
MechanicsLinné Flow Center, FLOWStability, Transition and Control
Fluid Mechanics and Acoustics

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 17 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf