Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Water Purification Using Functionalized Cellulosic Fibers with Nonleaching Bacteria Adsorbing Properties
KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Wood Chemistry and Pulp Technology.ORCID iD: 0000-0002-1656-1465
KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Wood Chemistry and Pulp Technology.ORCID iD: 0000-0003-3858-8324
KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology, Wood Chemistry and Pulp Technology.ORCID iD: 0000-0003-1812-7336
2017 (English)In: Environmental Science and Technology, ISSN 0013-936X, E-ISSN 1520-5851, Vol. 13, p. 7616-7623Article in journal (Refereed) Published
Abstract [en]

 Portable purifi cation systems are easy ways to obtain clean drinking water when there is no large-scale water treatment available. In this study, the potential to purify water using bacteria adsorbing cellulosic fi bers, functionalized with polyelectrolytes according to the layer-by-layer method, is investigated. The adsorbed polyelectrolytes create a positive charge on the fi ber surface that physically attracts and bonds with bacteria. Three types of cellulosic materials have been modifi ed and tested for the bacterial removal capacity in water. The time, material-water ratio and bacterial concentration dependence, as well as the bacterial removal capacity in water from natural sources, have been evaluated. Freely dispersed bacteria adsorbing cellulosic fi bers can remove greater than 99.9% of Escherichia coli  from nonturbid water, with the most notable reduction occurring within the fi rst hour. A fi ltering approach using modifi ed cellulosic fi bers is desirable for purifi cation of natural water. An initial fi ltration test showed that polyelectrolyte multilayer modifi ed cellulosic fi bers can remove greater than 99% of bacteria from natural water. The bacteria adsorbing cellulosic fi bers do not leach any biocides, and it is an environmentally sustainable and cheap option for disposable water purification devices.

Place, publisher, year, edition, pages
American Chemical Society (ACS), 2017. Vol. 13, p. 7616-7623
Keywords [en]
cellulose, water treatment, water purification, layer by layer, multilayer adsorption, bacteria removing
Keywords [sv]
Vattenrening, cellulosa, pappersmassa, multilager, bakterieadsorption
National Category
Paper, Pulp and Fiber Technology
Research subject
Fibre and Polymer Science
Identifiers
URN: urn:nbn:se:kth:diva-218668DOI: 10.1021/acs.est.7b01153ISI: 000405056200035Scopus ID: 2-s2.0-85024408693OAI: oai:DiVA.org:kth-218668DiVA, id: diva2:1161429
Note

QC 20171204

Available from: 2017-11-30 Created: 2017-11-30 Last updated: 2018-11-12Bibliographically approved
In thesis
1. Antimicrobial materials from cellulose using environmentally friendly techniques
Open this publication in new window or tab >>Antimicrobial materials from cellulose using environmentally friendly techniques
2018 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

The transition to a more biobased society introduces both new opportunities and new challenges as we replace nonrenewable materials with renewable alternatives. One important challenge will be to control microbial growth on materials, both to protect the materials from biological degradation and to prevent the spread of infections and toxins that can cause illness.

In this thesis, both existing and new types of cellulose-based materials were treated with environmentally friendly alternatives to usual biocides to prevent microbial growth and remove bacteria from water. Two types of antimicrobial systems were studied, and the antimicrobial effects were evaluated for bacteria and fungi using both model organisms and wild-type cultures.

The first antimicrobial approach employed was a nonleaching and contact-active layer-by-layer adsorption of polyelectrolytes to provide the cellulose fibers with a cationic surface charge, which attracts and captures bacteria onto the fiber surface. The study showed that paper filters with pores much larger than bacteria could remove more than 99.9 % of E. coli from water when used in filtration mode. The polyelectrolyte-modified materials showed a good antibacterial effect but did not prevent fungal growth.

The second approach was to utilize biobased compounds with antimicrobial properties, which were applied to cellulose fiber foam materials. Chitosan and extractives from birch bark were selected as biobased options for antimicrobial agents. Two types of cellulose fiber foam materials were developed and evaluated for their antimicrobial properties.

This thesis shows the importance of understanding both the application and the targeted microorganism when selecting an environmentally friendly antimicrobial system for treating biobased materials. It highlights that a good understanding of both material science and microbiology is important when designing new antimicrobial materials.

Abstract [sv]

Satsningen på ett mer biobaserat samhälle, där vi ersätter icke-förnybara material med förnyelsebara alternativ, är en pusselbit för en mer hållbar framtid samtidigt som den medför nya utmaningar. En viktig uppgift är att minska och kontrollera mikrobiell tillväxt, både för att skydda material från biologisk nedbrytning men också för att förhindra spridning av infektioner och toxiner.

Cellulosabaserade material har behandlats med miljövänliga alternativ till traditionella biocider för att förhindra mikrobiell tillväxt och för ta bort bakterier från vatten. Två typer av antimikrobiella system har använts varefter den antimikrobiella effekten mot både mögel och bakterier utvärderats, med hjälp av både modellorganismer och mikrobiella odlingar från naturen.

Den första typen av antimikrobiell metod som använts baseras på en kontakt-aktivt teknik. Cellulosafibrer har modifierats genom lager-på-lager polyelektrolytadsorption för att skapa en positiv ytladdning som kan attrahera och binda bakterier till fiberytan. Studien visar att modifierade pappersfilter, med porer som är mycket större än bakterier, kan filtrera bort mer än 99,9 % av E. coli från kontaminerat vatten. De polyelektrolyt-modifierade cellulosamaterialen påvisade goda antibakteriella egenskaper men förhindrade inte tillväxt av mögel.

Den andra metoden som undersökts var att tillsätta biobaserade ämnen med antimikrobiella egenskaper till cellulosabaserade fiberskum. Kitosan och extraktivämnen från björkbark valdes ut som miljövänliga alternativ till vanliga biocider. Två typer av cellulosabaserade fiberskum har tagits fram och utvärderats för deras antimikrobiella egenskaper.

Avhandlingen visar hur viktigt det är att veta hur materialet är tänkt att användas och vilken typ av mikroorganism som skall undvikas när man väljer antimikrobiell behandling av biobaserade material. God förståelse för både materialvetenskap och mikrobiologi är nödvändig när nya biobaserade material med antimikrobiella egenskaper skall designas.

Place, publisher, year, edition, pages
KTH Royal Institute of Technology, 2018. p. 68
Series
TRITA-CBH-FOU ; 2018:57
Keywords
Antibacterial, antifungal, cellulosic, mold, bacteria, biobased, bio-based, renewable, insulation, packaging, water treatment, water purification, paper filter, paper, membrane, Antibakteriell, fungicid, mögel, antimögel, pappersfilter, vattenrening, membran, papper, bakterier, cellulosa, förpackning, isolering, förnyelsebar, biobaserade, nya material
National Category
Paper, Pulp and Fiber Technology Water Treatment Microbiology
Research subject
Fibre and Polymer Science
Identifiers
urn:nbn:se:kth:diva-238843 (URN)978-91-7873-031-5 (ISBN)
Public defence
2018-12-07, F3, Lindstedtsvägen 26, KTH Campus, Stockholm, 14:00 (English)
Opponent
Supervisors
Funder
ÅForsk (Ångpanneföreningen's Foundation for Research and Development), 17-391Swedish Research Council Formas, 2014-00959
Note

QC 20181114

Available from: 2018-11-14 Created: 2018-11-12 Last updated: 2018-11-14Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopushttp://pubs.acs.org/doi/abs/10.1021/acs.est.7b01153

Authority records BETA

Ottenhall, AnnaEk, MonicaIllergård, Josefin

Search in DiVA

By author/editor
Ottenhall, AnnaEk, MonicaIllergård, Josefin
By organisation
Wood Chemistry and Pulp Technology
In the same journal
Environmental Science and Technology
Paper, Pulp and Fiber Technology

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 134 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf