Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Chemical synthesis of poly(3-thiophene-acetic-acid)/magnetite nanocomposites with tunable magnetic behaviour
Show others and affiliations
2010 (English)In: Synthetic Metals, Vol. 160, no 1-2, p. 65-71Article in journal (Refereed) Published
Abstract [en]

Conducting polymer-based magnetic composites with controlled magnetic behaviour have been synthesized by chemical polymerization in nanoparticle containing organic media. Poly(3-thiophene-acetic-acid)–Fe3O4 hybrids have been prepared with five different iron-oxide contents, up to 20 m/m%, according to the results obtained by thermogravimetric analysis (TGA) and inductively coupled plasma atomic emission spectroscopic (ICP-AES) measurements. X-ray diffraction (XRD) and Mössbauer spectroscopic results gave direct evidences for the incorporation of both maghemite and magnetite. Photoacoustic Fourier transform infrared spectroscopic (PAS-FT-IR) measurements showed a chemical interaction between the polymer and the iron-oxide particles. SQUID investigations indicated a typical superparamagnetic behaviour for all samples, where saturation magnetization values proved to be tunable by the Fe3O4 content. After coating them onto electrode surfaces, basic electrochemical activity of the composite samples was demonstrated by cyclic voltammetry.

Place, publisher, year, edition, pages
Elsevier, 2010. Vol. 160, no 1-2, p. 65-71
Keywords [en]
Poly(3-thiophene-acetic-acid), Magnetite, Nanocomposite, Superparamagnetic
National Category
Physical Chemistry
Identifiers
URN: urn:nbn:se:kth:diva-218764DOI: 10.1016/j.synthmet.2009.09.034ISI: 000274117700011Scopus ID: 2-s2.0-72549092036OAI: oai:DiVA.org:kth-218764DiVA, id: diva2:1161462
Note

QC 20171211

Available from: 2017-11-30 Created: 2017-11-30 Last updated: 2017-12-11Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Search in DiVA

By author/editor
Endrődi, Balázs
Physical Chemistry

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 9 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf