Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Continuous-flow electroreduction of carbon dioxide
Show others and affiliations
2017 (English)In: Progress in Energy and Combustion Science, Vol. 62, p. 133-154Article in journal (Refereed) Published
Abstract [en]

Solar fuel generation through electrochemical CO2 conversion offers an attractive avenue to store the energy of sunlight in the form of chemical bonds, with the simultaneous remediation of a greenhouse gas. While impressive progress has been achieved in developing novel nanostructured catalysts and understanding the mechanistic details of this process, limited knowledge has been gathered on continuous-flow electrochemical reactors for CO2 electroreduction. This is indeed surprising considering that this might be the only way to scale-up this fledgling technology for future industrial application. In this review article, we discuss the parameters that influence the performance of flow CO2 electrolyzers. This analysis spans the overall design of the electrochemical cell (microfluidic or membrane-based), the employed materials (catalyst, support, etc.), and the operational conditions (electrolyte, pressure, temperature, etc.). We highlight R&D avenues offering particularly promising development opportunities together with the intrinsic limitations of the different approaches. By collecting the most relevant characterization methods (together with the relevant descriptive parameters), we also present an assessment framework for benchmarking CO2electrolyzers. Finally, we give a brief outlook on photoelectrochemical reactors where solar energy input is directly utilized.

Place, publisher, year, edition, pages
Elsevier, 2017. Vol. 62, p. 133-154
Keywords [en]
Electrolysis, CO2 conversion, Renewable energy, SyngasSolar fuels
National Category
Physical Chemistry
Identifiers
URN: urn:nbn:se:kth:diva-218743DOI: 10.1016/j.pecs.2017.05.005ISI: 000406818800004Scopus ID: 2-s2.0-85020470894OAI: oai:DiVA.org:kth-218743DiVA, id: diva2:1161486
Note

QC 20171211

Available from: 2017-11-30 Created: 2017-11-30 Last updated: 2017-12-11Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Search in DiVA

By author/editor
Endrődi, Balázs
Physical Chemistry

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 13 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf