Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
A CRISPR/Cas9-based exploration into the elusive mechanism for lactate export in Saccharomyces cerevisiae
Show others and affiliations
2017 (English)In: FEMS Yeast ResearchArticle in journal (Refereed) Published
Abstract [en]

CRISPR/Cas9-based genome editing allows rapid, simultaneous modification of multiple genetic loci in Saccharomyces cerevisiae. Here, this technique was used in a functional analysis study aimed at identifying the hitherto unknown mechanism of lactate export in this yeast. First, an S. cerevisiae strain was constructed with deletions in 25 genes encoding transport proteins, including the complete aqua(glycero)porin family and all known carboxylic-acid transporters. The 25-deletion strain was then transformed with an expression cassette for Lactobacillus casei lactate dehydrogenase (LcLDH). In anaerobic, glucose-grown batch cultures, this strain exhibited a lower specific growth rate (0.15 vs. 0.25 h-1) and biomass-specific lactate production rate (0.7 vs. 2.4 mmol (g biomass)-1 h-1) than an LcLDH-expressing reference strain. However, a comparison of the two strains in anaerobic glucose-limited chemostat cultures (dilution rate 0.10 h-1) showed identical lactate production rates. These results indicate that, although deletion of the 25 transporter genes affected the maximum specific growth rate, it did not impact lactate export rates when analysed at a fixed specific growth rate. The 25-deletion strain provides a first step towards a 'minimal transportome' yeast platform, which can be applied for functional analysis of specific (heterologous) transport proteins as well as for evaluation of metabolic engineering strategies.

Place, publisher, year, edition, pages
2017.
Keywords [en]
CRISPR; Cas9; carboxylic acid; diffusion; genome editing; metabolic engineering
National Category
Industrial Biotechnology
Identifiers
URN: urn:nbn:se:kth:diva-219264DOI: 10.1093/femsyr/fox085ISI: 000425925100007Scopus ID: 2-s2.0-85042166046OAI: oai:DiVA.org:kth-219264DiVA, id: diva2:1162026
Note

QC 20171211

Available from: 2017-12-01 Created: 2017-12-01 Last updated: 2018-03-13Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Search in DiVA

By author/editor
van Maris, Antonius JA
Industrial Biotechnology

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 15 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf