Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Energy and economic assessment of a polygeneration district heating and cooling system based on gasification of refuse derived fuels
KTH, School of Industrial Engineering and Management (ITM), Energy Technology. Universidade de Lisboa, Portugal.
KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering.ORCID iD: 0000-0002-1837-5439
KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Heat and Power Technology.ORCID iD: 0000-0002-3661-7016
2017 (English)In: Energy, ISSN 0360-5442, E-ISSN 1873-6785, Vol. 137, 696-705 p.Article in journal (Refereed) Published
Abstract [en]

Conventional district heating and cooling (DHC) systems are compelled to reduce their fossil fuel dependency while ensuring profitability as cooling and heating demands decline. One solution is to retrofit the system with a gasifier and product gas upgrading equipment so that the system will be able to diversify its fuel input, including biomass and waste resources, while simultaneously producing synthetic natural gas (SNG), synthetic gas (syngas) and char complementarily to heat, cold and electricity. The main objective of this study is to assess energetically and economically a polygeneration DHC system based on gasification of refuse derived fuels considering the following sub-product scenarios: char; char and syngas; char and SNG; and char, syngas and SNG. The results show that when char is the only sub product of the modified DHC system, the investment payback is 3 years, the discounted net cash flow (DNCF) is 142 mln USD, and the system trigeneration efficiency is 83.6%. When other sub-products are supplied by the system, its performance reduces but the system DNCF increases, while the investment payback remains constant.

Place, publisher, year, edition, pages
Elsevier, 2017. Vol. 137, 696-705 p.
Keyword [en]
Gasification, Polygeneration, District heating and cooling system, Energy and economic assessment
National Category
Energy Engineering
Identifiers
URN: urn:nbn:se:kth:diva-219347DOI: 10.1016/j.energy.2017.06.110ISI: 000414879400062Scopus ID: 2-s2.0-85021386850OAI: oai:DiVA.org:kth-219347DiVA: diva2:1162774
Conference
29th International Conference on Efficiency, Cost, Optimisation, Simulation, and Environmental Impact of Energy Systems (ECOS), JUN 19-23, 2016, Portoroz, SLOVENIA
Note

QC 20171205

Available from: 2017-12-05 Created: 2017-12-05 Last updated: 2017-12-05Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Authority records BETA

Kabalina, NataliaWeihong, YangMartin, Andrew R.

Search in DiVA

By author/editor
Kabalina, NataliaWeihong, YangMartin, Andrew R.
By organisation
Energy TechnologyMaterials Science and EngineeringHeat and Power Technology
In the same journal
Energy
Energy Engineering

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 4 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf