Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
MMS Observations of Reconnection at Dayside Magnetopause Crossings During Transitions of the Solar Wind to Sub-Alfvénic Flow
Show others and affiliations
2017 (English)In: Journal of Geophysical Research - Space Physics, ISSN 2169-9380, E-ISSN 2169-9402, Vol. 122, no 10, p. 9934-9951Article in journal (Refereed) Published
Abstract [en]

We present MMS observations during two dayside magnetopause crossings under hitherto unexamined conditions: (i) when the bow shock is weakening and the solar wind transitioning to sub-Alfvénic flow and (ii) when it is reforming. Interplanetary conditions consist of a magnetic cloud with (i) a strong B (∼20 nT) pointing south and (ii) a density profile with episodic decreases to values of ∼0.3 cm−3 followed by moderate recovery. During the crossings the magnetosheath magnetic field is stronger than the magnetosphere field by a factor of ∼2.2. As a result, during the outbound crossing through the ion diffusion region, MMS observed an inversion of the relative positions of the X and stagnation (S) lines from that typically the case: the S line was closer to the magnetosheath side. The S line appears in the form of a slow expansion fan near which most of the energy dissipation is taking place. While in the magnetosphere between the crossings, MMS observed strong field and flow perturbations, which we argue to be due to kinetic Alfvén waves. During the reconnection interval, whistler mode waves generated by an electron temperature anisotropy (Te⊥>Te∥) were observed. Another aim of the paper is to distinguish bow shock-induced field and flow perturbations from reconnection-related signatures. The high-resolution MMS data together with 2-D hybrid simulations of bow shock dynamics helped us to distinguish between the two sources. We show examples of bow shock-related effects (such as heating) and reconnection effects such as accelerated flows satisfying the Walén relation. ©2017. American Geophysical Union. All Rights Reserved.

Place, publisher, year, edition, pages
Blackwell Publishing Ltd , 2017. Vol. 122, no 10, p. 9934-9951
Keywords [en]
magnetic reconnection under extreme conditions
National Category
Fusion, Plasma and Space Physics Geophysics
Identifiers
URN: urn:nbn:se:kth:diva-219466DOI: 10.1002/2017JA024563Scopus ID: 2-s2.0-85034758557OAI: oai:DiVA.org:kth-219466DiVA, id: diva2:1163245
Note

Export Date: 6 December 2017; Article; Correspondence Address: Farrugia, C.J.; Space Science Center, University of New HampshireUnited States; email: charlie.farrugia@unh.edu; Funding details: 499878Q, NASA, National Aeronautics and Space Administration; Funding details: AGS-1357893, NSF, National Science Foundation; Funding details: AGS-1357893, NSF, National Sleep Foundation; Funding details: AGS-1435785, NSF, National Science Foundation; Funding details: AGS-1435785, NSF, National Sleep Foundation; Funding details: NNX12AH45G, NASA, National Aeronautics and Space Administration; Funding details: NNX15AB87G, NASA, National Aeronautics and Space Administration; Funding details: NNX16AO04G, NASA, National Aeronautics and Space Administration; Funding details: STFC, Science and Technology Facilities Council; Funding text: We are grateful to F. T. Gratton for helpful discussions. We thank the MMS team for the effort invested in the preparation of the data. All MMS data are publicly available at MMS Science Data Center (https://lasp.colorado.edu/mms/sdc/public/). Solar wind data from the Wind spacecraft are obtained from http://cdaweb.gsfc.nasa.gov/istp_public/. This work was supported by NASA contracts 499878Q, NNX16AO04G, NNX15AB87G, and NNX12AH45G, NSF grants AGS-1357893 and AGS-1435785, and STFC grant ST/N000692/1.; References: Birn, J., Borovsky, J.E., Hesse, M., Properties of asymmetric magnetic reconnection (2008) Physics of Plasmas, 15; Borovsky, J.E., Hesse, M., The reconnection of magnetic fields between plasmas with different densities: Scaling relations (2007) Physics of Plasmas, 14 (10); Borovsky, J.E., Hesse, M., Birn, J., Kuznetsova, M.M., What determines the reconnection rate at the dayside magnetosphere? (2008) Journal of Geophysical Research, 113. , https://doi.org/10.1029/2007JA012645; Burlaga, L.F., Sittler, E., Mariani, F., Schwenn, R., Magnetic loop behind an interplanetary shock: Voyager, Helios and IMP 8 observations (1981) Journal of Geophysical Research, 86, pp. 6673-6688. , https://doi.org/10.1029/JA086iA08p06673; Cassak, P.A., Shay, M.A., Scaling of asymmetric magnetic reconnection: General theory and collisional simulations (2007) Physics of Plasmas, 14; Cassak, P.A., Shay, M.A., Structure of the dissipation region in fluid simulations of asymmetric magnetic reconnection (2009) Physics of Plasmas, 16; Chaston, C., Bonnell, J., McFadden, J.P., Carlson, C.W., Cully, C., Le Contel, O., Russell, C.T., Turbulent heating and cross-field transport near the magnetopause from THEMIS (2008) Geophysical Research Letters, 35. , https://doi.org/10.1029/2008GL033601; Dunlop, M.W., Southwood, D.J., Glassmeier, K.-H., Neubauer, F.M., Analysis of multipoint magnetometer data (1988) Advances in Space Research, 8 (9-10), pp. 273-277; Eastwood, J.P., Phan, T.D., Øieroset, M., Shay, M.A., Malakit, K., Swisdak, M., Influence of asymmetries and guide fields on the magnetic reconnection diffusion region in collisionless space plasmas (2013) Plasma Physics and Controlled Fusion, 55. , https://doi.org/10.1088/0741-3335/55/12/124001; Farrugia, C.J., Singer, H.J., Evans, D., Berdichevsky, D., Scudder, J.D., Ogilvie, K.W., Russell, C.T., Response of the equatorial and polar magnetosphere to the very tenuous solar wind on May 11, 1999 (2000) Geophysical Research Letters, 27, pp. 3773-3776. , https://doi.org/10.1029/2000GL003800; Gary, S.P., Karimabadi, H., Linear theory of electron temperature anisotropy instabilities: Whistler, mirror, and Weibel (2006) Journal of Geophysical Research, 111. , https://doi.org/10.1029/2006JA011764; Graham, D.B., Vaivads, A., Khotyaintsev, Y.V., André, M., Whistler emission in the separatrix regions of asymmetric magnetic reconnection (2016) Journal of Geophysical Research: Space Physics, 121, pp. 1934-1954. , https://doi.org/10.1002/2015JA021239; Harvey, C.C., Spatial gradients and the volumetric tensor (1998) Analysis Methods for Multi-Spacecraft Data, pp. 307-348. , In, G. Paschmann, #x0026;, P. W. Daly, (Eds.),, Bern, International Space Science Institute.s; Hasegawa, H., Maezawa, K., Mukai, T., Saito, Y., Plasma entry across the distant tail magnetopause, 2. Comparison between MHD theory and observation (2002) Journal of Geophysical Research, 107 (A6). , https://doi.org/10.1029/2001JA900138, #x0026;, >; Hollweg, J.V., Kinetic Alfvén wave revisited (1999) Journal of Geophysical Research, 104 (A7), pp. 14,811-14,820. , https://doi.org/10.1029/1998JA900132; Le Contel, O., Retinò, A., Breuillard, H., Mirioni, L., Robert, P., Chasapis, A., Saito, Y., Whistler mode waves and Hall fields detected by MMS during a dayside magnetopause crossing (2016) Geophysical Research Letters, 43, pp. 5943-5952. , https://doi.org/10.1002/2016GL068968; Levy, R.H., Petschek, H.E., Siscoe, G.L., Aerodynamic aspects of magnetospheric flow (1964) AIAA Journal, 2, pp. 2065-2075; Lopez, R.E., Solar cycle invariance in solar wind proton temperature relationships (1997) Journal of Geophysical Research, 92, pp. 11,187-11,194. , https://doi.org/10.1029/JA092iA10p11189; Lugaz, N., Farrugia, C.J., Huang, C.L., Winslow, R.M., Spence, H.E., Schwadron, N.A., Earth's magnetosphere and outer radiation belt under sub-Alfvénic solar wind (2016) Nature Communications, 7. , https://doi.org/10.1038/ncomms13001; Maynard, N.C., Farrugia, C.J., Burke, W.J., Ober, D.M., Mozer, F.S., Réme, H., Cluster observations of the dusk flank magnetopause near the sash: Ion dynamics and flow-through reconnection (2012) Journal of Geophysical Research, 117. , https://doi.org/10.1029/2012JA017703; Mozer, F.S., Retinò, A., Quantitative estimates of magnetic field reconnection properties from electric and magnetic field measurements (2007) Journal of Geophysical Research, 112. , https://doi.org/10.1029/2007JA012406; Mozer, F.S., Pritchett, P.L., Bonnell, J., Sundkvist, D., Chang, M.T., Observations and simulations of asymmetric magnetic field reconnection (2008) Journal of Geophysical Research, 113. , https://doi.org/10.1029/2008JA013535; Mozer, F.S., Angelopoulos, V., Bonnell, J., Glassmeier, K.H., McFadden, J.P., THEMIS observations of modified Hall fields in asymmetric magnetic field reconnection (2008) Geophysical Research Letters, 35. , https://doi.org/10.1029/2007GL033033; Muzamil, F., Farrugia, C.J., Torbert, R.B., Pritchett, P.R., Mozer, F.S., Scudder, J.D., Wilson, L., III, Structure of a reconnection layer poleward of the cusp: Extreme density asymmetry and a guide field (2014) Journal of Geophysical Research: Space Physics, 119, pp. 7343-7362. , https://doi.org/10.1002/2014JA019879; Paschmann, G., Papamastorakis, I., Baumjohann, W., Sckopke, N., Carlson, C.W., Sonnerup, B.U.Ö., Lühr, H., The magnetopause for large magnetic shear: AMPTE/IRM observations (1986) Journal of Geophysical Research, 91 (A10), pp. 11,099-11,115. , https://doi.org/10.1029/JA091iA10p11099; Petschek, H.E., Magnetic field annihilation (1964) AAS-NASA Symposium on the Physics of Solar flares SP-50, pp. 425-439. , In, W. N. Ness, (Ed.),, Washington, DC, NASA; Pritchett, P.L., Collisionless magnetic reconnection in an asymmetric current sheet (2008) Journal of Geophysical Research, 113. , https://doi.org/10.1029/2007JA012930; Pritchett, P.L., Mozer, F.S., Asymmetric magnetic reconnection in the presence of a guide field (2009) Journal of Geophysical Research, 114. , https://doi.org/10.1029/2009JA014343; Roux, A., Robert, P., Le Contel, O., Angelopoulos, V., Auster, U., Bonnell, J., McFadden, J.P., A mechanism for heating electrons in the magnetopause current layer and adjacent regions (2011) Annales Geophysicae, 29, pp. 2305-2316; Russell, C.T., Mellott, M., Smith, E.J., King, J.H., Multiple spacecraft observations of interplanetary shocks: Four spacecraft determination of shock normals (1983) Journal of Geophysical Research, 88 (A6), pp. 4739-4748. , https://doi.org/10.1029/JA088iA06p04739; Scudder, J.D., Holdaway, R.D., Glassberg, R., Rodriguez, R., Electron diffusion region and thermal demagnetization (2008) Journal of Geophysical Research, 113. , https://doi.org/10.1029/2008JA013361; Shue, J.H., Song, P., Russell, C.T., Steinberg, J.T., Chao, J.K., Zastenker, G., Kawano, H., Magnetopause location under extreme solar wind conditions (1998) Journal of Geophysical Research, 103 (A8), pp. 17,691-17,700. , https://doi.org/10.1029/98JA01103; Siscoe, G.L., Sanchez, E., An MHD model for the complete open magnetotail boundary (1987) Journal of Geophysical Research, 92 (A7), pp. 7,405-7,412. , https://doi.org/10.1029/JA092iA07p07405; Sonnerup, B.U.Ö., Cahill, L.J., Magnetopause structure and attitude from Explorer 12 observations (1967) Journal of Geophysical Research, 72, pp. 171-183. , https://doi.org/10.1029/JZ072i001p00171; Sonnerup, B.U.Ö., Scheible, M., Minimum and maximum variance analysis (1998) Analysis Methods for Multi-Spacecraft Data, pp. 185-220. , #x0026;, In, G. Paschmann, #x0026;, P. W. Daly, (Eds.),, ISSI Scientific Report chap. 8, Noordwijk, Netherlands, ESA Publications Division. QC 20171212

Available from: 2017-12-06 Created: 2017-12-06 Last updated: 2017-12-12Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Search in DiVA

By author/editor
Lindqvist, P. A.Marklund, G. T.
In the same journal
Journal of Geophysical Research - Space Physics
Fusion, Plasma and Space PhysicsGeophysics

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 93 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf