Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Cold Ionospheric Ions in the Magnetic Reconnection Outflow Region
Show others and affiliations
2017 (English)In: Journal of Geophysical Research - Space Physics, ISSN 2169-9380, E-ISSN 2169-9402, Vol. 122, no 10, 10,194-10,202 p.Article in journal (Refereed) Published
Abstract [en]

Magnetosheath plasma usually determines properties of asymmetric magnetic reconnection at the subsolar region of Earth's magnetopause. However, cold plasma that originated from the ionosphere can also reach the magnetopause and modify the kinetic physics of asymmetric reconnection. We present a magnetopause crossing with high-density (10–60 cm−3) cold ions and ongoing reconnection from the observation of the Magnetospheric Multiscale (MMS) spacecraft. The magnetopause crossing is estimated to be 300 ion inertial lengths south of the X line. Two distinct ion populations are observed on the magnetosheath edge of the ion jet. One population with high parallel velocities (200–300 km/s) is identified to be cold ion beams, and the other population is the magnetosheath ions. In the deHoffman-Teller frame, the field-aligned magnetosheath ions are Alfvénic and move toward the jet region, while the field-aligned cold ion beams move toward the magnetosheath boundary layer, with much lower speeds. These cold ion beams are suggested to be from the cold ions entering the jet close to the X line. This is the first observation of the cold ionospheric ions in the reconnection outflow region, including the reconnection jet and the magnetosheath boundary layer. ©2017. American Geophysical Union. All Rights Reserved.

Place, publisher, year, edition, pages
Blackwell Publishing, 2017. Vol. 122, no 10, 10,194-10,202 p.
Keyword [en]
cold ion, MMS, reconnection outflow
National Category
Fusion, Plasma and Space Physics Geophysics
Identifiers
URN: urn:nbn:se:kth:diva-219468DOI: 10.1002/2017JA024287Scopus ID: 2-s2.0-85031694123OAI: oai:DiVA.org:kth-219468DiVA: diva2:1163252
Note

Export Date: 6 December 2017; Article; Correspondence Address: Li, W.Y.; Swedish Institute of Space PhysicsSweden; email: wyli@irfu.se; Funding details: 158/16, SNSB, Swedish National Space Board; Funding details: 176/15, SNSB, Swedish National Space Board; Funding details: 67/16, SNSB, Swedish National Space Board; Funding text: The OMNI data were generated by J. H. King and N. Papitashivilli and provided via http://cdaweb.gsfc.nasa.gov/. MMS observations are publicly available via NASA resources and the Science Data Center at CU/LASP (https://lasp.colorado.edu/mms/sdc/public/). This work was supported by Swedish National Space Board (SNSB) contracts 158/16, 176/15, and 67/16. Research at Southwest Research Institute was supported under contract with NASA. W. Y. Li thanks Qinghe Zhang from the School of Space Science and Physics, Shandong University, Weihai, China for checking the plume inside the magnetopause by using TEC data.; References: André, M., Cully, C.M., Low-energy ions: A previously hidden solar system particle population (2012) Geophysical Research Letters, 39. , https://doi.org/10.1029/2011GL050242; André, M., Li, K., Eriksson, A.I., Outflow of low-energy ions and the solar cycle (2015) Journal of Geophysical Research: Space Physics, 120, pp. 1072-1085. , https://doi.org/10.1002/2014JA020714; André, M., Li, W., Toledo-Redondo, S., Khotyaintsev, Y.V., Vaivads, A., Graham, D.B., Saito, Y., Magnetic reconnection and modification of the Hall physics due to cold ions at the magnetopause (2016) Geophysical Research Letters, 43, pp. 6705-6712. , https://doi.org/10.1002/2016GL069665; Blake, J.B., Mauk, B.H., Baker, D.N., Carranza, P., Clemmons, J.H., Craft, J., Westlake, J., The fly's eye energetic particle spectrometer (FEEPS) sensors for the Magnetospheric Multiscale (MMS) mission (2016) Space Science Reviews, 199 (1-4), pp. 309-329. , https://doi.org/10.1007/s11214-015-0163-x; Burch, J.L., Moore, T.E., Torbert, R.B., Giles, B.L., Magnetospheric multiscale overview and science objectives (2016) Space Science Reviews, 199 (1), pp. 5-21. , https://doi.org/10.1007/s11214-015-0164-9; Burch, J.L., Torbert, R.B., Phan, T.D., Chen, L.-J., Moore, T.E., Ergun, R.E., Chandler, M., Electron-scale measurements of magnetic reconnection in space (2016) Science, 352, p. 6,290. , https://doi.org/10.1126/science.aaf2939; Cassak, P.A., Shay, M.A., Scaling of asymmetric magnetic reconnection: General theory and collisional simulations (2007) Physics of Plasmas, 14 (10), p. 102,114. , https://doi.org/10.1063/1.2795630; Chappell, C.R., Baugher, C.R., Horwitz, J.L., New advances in thermal plasma research (1980) Reviews of Geophysics, 18 (4), pp. 853-861. , https://doi.org/10.1029/RG018i004p00853; Cowley, S.W.H., The causes of convection in the Earth's magnetosphere: A review of developments during the IMS (1982) Reviews of Geophysics, 20 (3), pp. 531-565. , https://doi.org/10.1029/RG020i003p00531; Cully, C.M., Donovan, E.F., Yau, A.W., Arkos, G.G., Akebono/Suprathermal mass spectrometer observations of low-energy ion outflow: Dependence on magnetic activity and solar wind conditions (2003) Journal of Geophysical Research, 108 (A2). , https://doi.org/10.1029/2001JA009200; Divin, A., Khotyaintsev, Y.V., Vaivads, A., André, M., Toledo-Redondo, S., Markidis, S., Lapenta, G., Three-scale structure of diffusion region in the presence of cold ions (2016) Journal of Geophysical Research: Space Physics, 121, pp. 12,001-12,013. , https://doi.org/10.1002/2016JA023606; Drake, J.F., Swisdak, M., Phan, T.D., Cassak, P.A., Shay, M.A., Lepri, S.T., Zurbuchen, T.H., Ion heating resulting from pickup in magnetic reconnection exhausts (2009) Journal of Geophysical Research, 114. , https://doi.org/10.1029/2008JA013701; Dungey, J.W., Interplanetary magnetic field and auroral zones (1961) Physical Review Letters, 6 (2), pp. 47-48. , https://doi.org/10.1103/PhysRevLett.6.47; Engwall, E., Eriksson, A.I., Cully, C.M., André, M., Torbert, R., Vaith, H., Earth's ionospheric outflow dominated by hidden cold plasma (2009) Nature Geoscience, 2 (1), pp. 24-27. , https://doi.org/10.1038/ngeo387; Ergun, R.E., Holmes, J.C., Goodrich, K.A., Wilder, F.D., Stawarz, J.E., Eriksson, S., André, M., Magnetospheric multiscale observations of large-amplitude, parallel, electrostatic waves associated with magnetic reconnection at the magnetopause (2016) Geophysical Research Letters, 43, pp. 5626-5634. , https://doi.org/10.1002/2016GL068992; Ergun, R.E., Tucker, S., Westfall, J., Goodrich, K.A., Malaspina, D.M., Summers, D., Cully, C.M., The axial double probe and fields signal processing for the MMS mission (2016) Space Science Reviews, 199 (1-4), pp. 167-188. , https://doi.org/10.1007/s11214-014-0115-x; Fuselier, S.A., Klumpar, D.M., Shelley, E.G., Ion reflection and transmission during reconnection at the Earth's subsolar magnetopause (1991) Geophysical Research Letters, 18 (2), pp. 139-142. , https://doi.org/10.1029/90GL02676; Fuselier, S.A., Burch, J.L., Cassak, P.A., Goldstein, J., Gomez, R.G., Goodrich, K., Valek, P., Magnetospheric ion influence on magnetic reconnection at the duskside magnetopause (2016) Geophysical Research Letters, 43, pp. 1435-1442. , https://doi.org/10.1002/2015GL067358; Fuselier, S.A., Lewis, W.S., Schiff, C., Ergun, R., Burch, J.L., Petrinec, S.M., Trattner, K.J., Magnetospheric multiscale science mission profile and operations (2016) Space Science Reviews, 199 (1), pp. 77-103. , https://doi.org/10.1007/s11214-014-0087-x; Graham, D.B., Khotyaintsev, Y.V., Norgren, C., Vaivads, A., André, M., Toledo-Redondo, S., Burch, J.L., Lower hybrid waves in the ion diffusion and magnetospheric inflow regions (2017) Journal of Geophysical Research: Space Physics, 122, pp. 517-533. , https://doi.org/10.1002/2016JA023572; Hudson, P.D., Discontinuities in an anisotropic plasma and their identification in the solar wind (1970) Planetary and Space Science, 18 (11), pp. 1611-1622. , https://doi.org/10.1016/0032-0633(70)90036-X; Khotyaintsev, Y.V., Vaivads, A., Retinò, A., André, M., Owen, C.J., Nilsson, H., Formation of inner structure of a reconnection separatrix region (2006) Physical Review Letters, 97, p. 205,003. , https://doi.org/10.1103/PhysRevLett.97.205003; Lindqvist, P.-A., Olsson, G., Torbert, R.B., King, B., Granoff, M., Rau, D., Tucker, S., The spin-plane double probe electric field instrument for MMS (2016) Space Science Reviews, 199 (1-4), pp. 137-165. , https://doi.org/10.1007/s11214-014-0116-9; Moore, T.E., Chappell, C.R., Chandler, M.O., Craven, P.D., Giles, B.L., Pollock, C.J., Mozer, F.S., High-altitude observations of the polar wind (1997) Science, 277 (5), pp. 349-351. , https://doi.org/10.1126/science.277.5324.349; Parker, E.N., Dynamical theory of the solar wind (1965) Space Science Reviews, 4 (5), pp. 666-708. , http://dx.doi.org/10.1007/bf00216273; Paschmann, G., Daly, P.W., (1998) Analysis Methods for Multi-Spacecraft Data, Noordwijk, , #x0026;, Netherlands, ESA Publications Division; Pollock, C., Moore, T., Jacques, A., Burch, J., Gliese, U., Saito, Y., Zeuch, M., Fast plasma investigation for magnetospheric multiscale (2016) Space Science Reviews, 199 (1-4), pp. 331-406. , https://doi.org/10.1007/s11214-016-0245-4; Pritchett, P.L., Collisionless magnetic reconnection in an asymmetric current sheet (2008) Journal of Geophysical Research, 113. , https://doi.org/10.1029/2007JA012930; Retinò, A., Cattaneo, M.B., Marcucci, M., Vaivads, A., André, M., Khotyaintsev, Y., Balogh, A., Cluster multispacecraft observations at the high-latitude duskside magnetopause: Implications for continuous and component magnetic reconnection (2005) Annales Geophysicae, 23 (2), pp. 461-473; Russell, C.T., Anderson, B.J., Baumjohann, W., Bromund, K.R., Dearborn, D., Fischer, D., Richter, I., The magnetospheric multiscale magnetometers (2016) Space Science Reviews, 199 (1-4), pp. 189-256. , https://doi.org/10.1007/s11214-014-0057-3; Sonnerup, B.U.Ö., Paschmann, G., Papamastorakis, I., Sckopke, N., Haerendel, G., Bame, S.J., Russell, C.T., Evidence for magnetic field reconnection at the Earth's magnetopause (1981) Journal of Geophysical Research, 86 (A12), pp. 10,049-10,067. , https://doi.org/10.1029/JA086iA12p10049; Toledo-Redondo, S., André, M., Khotyaintsev, Y.V., Vaivads, A., Walsh, A., Li, W., Russell, C.T., Cold ion demagnetization near the X-line of magnetic reconnection (2016) Geophysical Research Letters, 43, pp. 6759-6767. , https://doi.org/10.1002/2016GL069877; Toledo-Redondo, S., Vaivads, A., André, M., Khotyaintsev, Y.V., Modification of the Hall physics in magnetic reconnection due to cold ions at the Earth's magnetopause (2015) Geophysical Research Letters, 42, pp. 6146-6154. , https://doi.org/10.1002/2015GL065129; Uchino, H., Kurita, S., Harada, Y., Machida, S., Angelopoulos, V., Waves in the innermost open boundary layer formed by dayside magnetopause reconnection (2017) Journal of Geophysical Research: Space Physics, 122, pp. 3291-3307. , https://doi.org/10.1002/2016JA023300; Walsh, B.M., Phan, T.D., Sibeck, D.G., Souza, V.M., The plasmaspheric plume and magnetopause reconnection (2014) Geophysical Research Letters, 41, pp. 223-228. , https://doi.org/10.1002/2013GL058802; Wang, S., Kistler, L.M., Mouikis, C.G., Liu, Y., Genestreti, K.J., Hot magnetospheric O+ and cold ion behavior in magnetopause reconnection: Cluster observations (2014) Journal of Geophysical Research: Space Physics, 119, pp. 9601-9623. , https://doi.org/10.1002/2014JA020402; Wang, S., Kistler, L.M., Mouikis, C.G., Petrinec, S.M., Dependence of the dayside magnetopause reconnection rate on local conditions (2015) Journal of Geophysical Research: Space Physics, 120, pp. 6386-6408. , https://doi.org/10.1002/2015JA021524; Yamada, M., Kulsrud, R., Ji, H., Magnetic reconnection (2010) Reviews of Modern Physics, 82 (1), pp. 603-664. , https://doi.org/10.1103/RevModPhys.82.603; Young, D.T., Burch, J.L., Gomez, R.G., De Los Santos, A., Miller, G.P., Wilson, P., Webster, J.M., Hot plasma composition analyzer for the magnetospheric multiscale mission (2016) Space Science Reviews, 199 (1), pp. 407-470. , https://doi.org/10.1007/s11214-014-0119-6. QC 20171212

Available from: 2017-12-06 Created: 2017-12-06 Last updated: 2017-12-12Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Search in DiVA

By author/editor
Lindqvist, P. -A
By organisation
Space and Plasma Physics
In the same journal
Journal of Geophysical Research - Space Physics
Fusion, Plasma and Space PhysicsGeophysics

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 15 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf