Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Magnetospheric Ion Evolution Across the Low-Latitude Boundary Layer Separatrix
Show others and affiliations
2017 (English)In: Journal of Geophysical Research - Space Physics, ISSN 2169-9380, E-ISSN 2169-9402, Vol. 122, no 10, p. 10247-10262Article in journal (Refereed) Published
Abstract [en]

On 20 September 2015, the Magnetospheric Multiscale (MMS) spacecraft crossed the dusk magnetopause after a compression of the magnetosphere. Enhanced densities and fluxes of both colder (≤10 eV) and hotter (>1 keV) magnetospheric and magnetosheath heavy ion species were observed reaching the magnetopause. The evolution of the velocity distributions for H+, He+, and O+ measured by the Hot Plasma Composition Analyzer on MMS during this magnetopause crossing is presented. In particular, this study focuses on the changes in the species' distribution functions as MMS passes from the magnetosphere through the electron edge of the low-latitude boundary layer (LLBL) separatrix and then into the LLBL. Two types of processes are suggested to play a role in the heating of colder magnetospheric ions across the LLBL separatrix in the region between the separatrix and the electron and ion edges of the LLBL. One mechanism leads to the formation and enhancement of ring distributions in this layer of the LLBL as the magnetospheric ions propagate across the separatrix. A second mechanism leading first to perpendicular heating and then to parallel heating of colder protons may arise from a possible two-stream instability as the magnetospheric ions first encounter the warmer magnetosheath electrons in the electron layer and then the warmer magnetosheath ions between the electron and ion edges of the LLBL separatrix. Perpendicular heating of He+ and O+ is seen more so in the main reconnection exhaust, due to nonadiabatic behavior of these ions as they are accelerated up to the bulk flow speed.

Place, publisher, year, edition, pages
Blackwell Publishing, 2017. Vol. 122, no 10, p. 10247-10262
Keywords [en]
ion heating, magnetopause, reconnection, separatrix
National Category
Fusion, Plasma and Space Physics Geophysics
Identifiers
URN: urn:nbn:se:kth:diva-219467DOI: 10.1002/2017JA024061ISI: 000419937800034Scopus ID: 2-s2.0-85031665771OAI: oai:DiVA.org:kth-219467DiVA, id: diva2:1163259
Note

QC 20171206

Available from: 2017-12-06 Created: 2017-12-06 Last updated: 2018-02-02Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Search in DiVA

By author/editor
Lindqvist, Per-Arne
By organisation
Space and Plasma Physics
In the same journal
Journal of Geophysical Research - Space Physics
Fusion, Plasma and Space PhysicsGeophysics

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 5 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf