Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
The transitional millisecond pulsar IGR J18245-2452 during its 2013 outburst at X-rays and soft gamma-rays
Show others and affiliations
2017 (English)In: Astronomy and Astrophysics, ISSN 0004-6361, E-ISSN 1432-0746, Vol. 603, article id A16Article in journal (Refereed) Published
Abstract [en]

IGR J18245-2452/PSR J1824-2452I is one of the rare transitional accreting millisecond X-ray pulsars, showing direct evidence of switches between states of rotation-powered radio pulsations and accretion-powered X-ray pulsations, dubbed transitional pulsars. IGR J18245-2452 with a spin frequency of ∼ 254.3 Hz is the only transitional pulsar so far to have shown a full accretion episode, reaching an X-ray luminosity of ∼ 1037 erg s-1 permitting its discovery with INTEGRAL in 2013. In this paper, we report on a detailed analysis of the data collected with the IBIS/ISGRI and the two JEM-X monitors on-board INTEGRAL at the time of the 2013 outburst. We make use of some complementary data obtained with the instruments on-board XMM-Newton and Swift in order to perform the averaged broad-band spectral analysis of the source in the energy range 0.4-250 keV. We have found that this spectrum is the hardest among the accreting millisecond X-ray pulsars. We improved the ephemeris, now valid across its full outburst, and report the detection of pulsed emission up to ∼ 60 keV in both the ISGRI (10.9σ) and Fermi/GBM (5.9σ) bandpass. The alignment of the ISGRI and Fermi GBM 20-60 keV pulse profiles are consistent at a ∼ 25 μs level. We compared the pulse profiles obtained at soft X-rays with XMM-Newton with the soft γ-ray ones, and derived the pulsed fractions of the fundamental and first harmonic, as well as the time lag of the fundamental harmonic, up to 150 μs, as a function of energy. We report on a thermonuclear X-ray burst detected with INTEGRAL, and using the properties of the previously type-I X-ray burst, we show that all these events are powered primarily by helium ignited at a depth of yign ≈ 2.7 × 108 g cm-2. For such a helium burst the estimated recurrence time of Δtrec ≈ 5.6 d is in agreement with the observations. 

Place, publisher, year, edition, pages
EDP Sciences , 2017. Vol. 603, article id A16
Keywords [en]
Pulsars: individual: IGR J18245-2452, Stars: neutron, X-rays: binaries, X-rays: bursts, Helium, Pulsars, Spectrum analysis, Complementary data, Fundamental harmonic, Millisecond pulsars, Pulsars: individuals, Stars: neutrons, X-ray luminosity, Gamma rays
National Category
Astronomy, Astrophysics and Cosmology
Identifiers
URN: urn:nbn:se:kth:diva-216297DOI: 10.1051/0004-6361/201730600ISI: 000406619100117Scopus ID: 2-s2.0-85021763776OAI: oai:DiVA.org:kth-216297DiVA, id: diva2:1163989
Note

QC 20171208

Available from: 2017-12-08 Created: 2017-12-08 Last updated: 2017-12-08Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Search in DiVA

By author/editor
Poutanen, Juri
By organisation
Nordic Institute for Theoretical Physics NORDITA
In the same journal
Astronomy and Astrophysics
Astronomy, Astrophysics and Cosmology

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 68 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf