Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Removal of fluoride from water through bacterial-surfactin mediated novel hydroxyapatite nanoparticle and its efficiency assessment: Adsorption isotherm, adsorption kinetic and adsorption Thermodynamics
Show others and affiliations
2018 (English)In: Environmental Nanotechnology, Monitoring and Management, ISSN 2215-1532, Vol. 9, p. 18-28Article in journal (Refereed) Published
Abstract [en]

Fluoride contamination in water due to natural and anthropogenic activities has been documented as serious problems worldwide commanding a major threat to the environment. Present study focuses to synthesis bacterial-surfactin (Bacillus subtilis) mediated nano-hydroxyapatite (HAp), novel adsorbents for defluoridation. HAp particle size and morphology were controlled by varying temperature of 90–150 °C and pH of 7–11, respectively. The TEM and SEM micrographs reveal that the short-rod particle is observed 20–30 nm at 90 °C and pH 11. The ratio between the length (nm) and width (nm) of nanoparticle are decreased from 4.17 to 1.65 with increasing pH (7–11). The selected area diffraction (SAD) of particles are indicated uniform rod-like monocrystals. The XRD and FTIR observations were indicated the synthesized HAp nanoparticles were well-crystallized with purity phase and high quality. The study reflected that the fluoride removal from contaminated water by HAp was increased significantly (R2 = 99) with the increasing adsorbent concentration, temperature and time, with two-step adsorption process as the first portion a rapid adsorption occurs during first 90 min after which equilibrium is slowly achieved. The adsorption process is closer to Freundlich isotherm (R2 > 98) than to Langmuir isotherm (R2 ≈ 92), indicating HAp as a good adsorbent (n > 3). Above 97% of fluoride removal were noticed at a HAp dose of 0.06 g/10 mL. The adsorption kinetics more fit with pseudo-second-order (R2= 99) in compare to pseudo-first-order (R2 ≈ 91). The slope and intercept of Arrhenius equation indicated the activation/adsorption energy (Ea) of 3.199 kJ/mol and frequency factor (A) of 1.78 1/s. Adsorption thermodynamic parameters (free energy (ΔG < 0), enthalpy (ΔH > 0) and entropy (ΔS > 0)) indicates the spontaneous and endothermic reactions of the adsorption process. Thus, newly synthesized HAp nanoparticles exhibit as a good adsorbent for fluoride removal, theoretically and experimentally being applicable for environmental pollution control.

Place, publisher, year, edition, pages
Elsevier, 2018. Vol. 9, p. 18-28
Keywords [en]
Characterization fluoride removal, Hydrothermal synthesis of HAp, Isotherm and kinetic and thermodynamics, Surfactin of Bacillus subtilis
National Category
Water Treatment
Identifiers
URN: urn:nbn:se:kth:diva-219631DOI: 10.1016/j.enmm.2017.11.001Scopus ID: 2-s2.0-85035147500OAI: oai:DiVA.org:kth-219631DiVA, id: diva2:1164353
Funder
Sida - Swedish International Development Cooperation Agency, 51170071
Note

QC 20171211

Available from: 2017-12-11 Created: 2017-12-11 Last updated: 2017-12-11Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records BETA

Bundschuh, Jochen

Search in DiVA

By author/editor
Bhattacharya, ProsunBundschuh, Jochen
By organisation
Water and Environmental EngineeringSustainable development, Environmental science and Engineering
Water Treatment

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 99 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf