Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Overview of the TCV tokamak program: Scientific progress and facility upgrades
Show others and affiliations
2017 (English)In: Nuclear Fusion, ISSN 0029-5515, E-ISSN 1741-4326, Vol. 57, no 10, article id 102011Article in journal (Refereed) Published
Abstract [en]

The TCV tokamak is augmenting its unique historical capabilities (strong shaping, strong electron heating) with ion heating, additional electron heating compatible with high densities, and variable divertor geometry, in a multifaceted upgrade program designed to broaden its operational range without sacrificing its fundamental flexibility. The TCV program is rooted in a three-pronged approach aimed at ITER support, explorations towards DEMO, and fundamental research. A 1 MW, tangential neutral beam injector (NBI) was recently installed and promptly extended the TCV parameter range, with record ion temperatures and toroidal rotation velocities and measurable neutral-beam current drive. ITER-relevant scenario development has received particular attention, with strategies aimed at maximizing performance through optimized discharge trajectories to avoid MHD instabilities, such as peeling-ballooning and neoclassical tearing modes. Experiments on exhaust physics have focused particularly on detachment, a necessary step to a DEMO reactor, in a comprehensive set of conventional and advanced divertor concepts. The specific theoretical prediction of an enhanced radiation region between the two X-points in the low-field-side snowflake-minus configuration was experimentally confirmed. Fundamental investigations of the power decay length in the scrape-off layer (SOL) are progressing rapidly, again in widely varying configurations and in both D and He plasmas; in particular, the double decay length in L-mode limited plasmas was found to be replaced by a single length at high SOL resistivity. Experiments on disruption mitigation by massive gas injection and electron-cyclotron resonance heating (ECRH) have begun in earnest, in parallel with studies of runaway electron generation and control, in both stable and disruptive conditions; a quiescent runaway beam carrying the entire electrical current appears to develop in some cases. Developments in plasma control have benefited from progress in individual controller design and have evolved steadily towards controller integration, mostly within an environment supervised by a tokamak profile control simulator. TCV has demonstrated effective wall conditioning with ECRH in He in support of the preparations for JT-60SA operation.

Place, publisher, year, edition, pages
Institute of Physics Publishing , 2017. Vol. 57, no 10, article id 102011
Keywords [en]
overview, TCV, tokamak, Controllers, Cyclotron resonance, Cyclotrons, Electric discharges, Electron cyclotron resonance, Electrons, Heating, Magnetoplasma, Nuclear reactors, Particle beams, Plasma heating, Plasma simulation, Sols, Electron cyclotron resonance heating, Fundamental research, Neoclassical tearing modes, Neutral beam injectors (NBI), Scenario development, Scientific progress, Tokamak devices
National Category
Physical Sciences
Identifiers
URN: urn:nbn:se:kth:diva-216449DOI: 10.1088/1741-4326/aa6412ISI: 000425866600001Scopus ID: 2-s2.0-85028466718OAI: oai:DiVA.org:kth-216449DiVA, id: diva2:1165168
Note

QC 20171212

Available from: 2017-12-12 Created: 2017-12-12 Last updated: 2018-03-13Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records BETA

Frassinetti, Lorenzo

Search in DiVA

By author/editor
Frassinetti, Lorenzo
By organisation
Fusion Plasma Physics
In the same journal
Nuclear Fusion
Physical Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 50 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf