Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Light axion-like dark matter must be present during inflation
KTH, Centres, Nordic Institute for Theoretical Physics NORDITA.
2017 (English)In: Physical Review D: covering particles, fields, gravitation, and cosmology, ISSN 2470-0010, E-ISSN 2470-0029, Vol. 96, no 2, article id 023013Article in journal (Refereed) Published
Abstract [en]

Axion-like particles (ALPs) might constitute the totality of the cold dark matter (CDM) observed. The parameter space of ALPs depends on the mass of the particle m and on the energy scale of inflation HI, the latter being bound by the nondetection of primordial gravitational waves. We show that the bound on HI implies the existence of a mass scale mχ=10 neV-0.5 peV, depending on the ALP susceptibility χ, such that the energy density of ALPs of mass smaller than mχ is too low to explain the present CDM budget, if the ALP field has originated after the end of inflation. This bound affects ultra-light axions (ULAs), which have recently regained popularity as CDM candidates. Light (m<mχ) ALPs can then be CDM candidates only if the ALP field has already originated during the inflationary period, in which case the parameter space is constrained by the nondetection of axion isocurvature fluctuations. We comment on the effects on these bounds from additional physics beyond the standard model, besides ALPs.

Place, publisher, year, edition, pages
American Physical Society , 2017. Vol. 96, no 2, article id 023013
National Category
Physical Sciences
Identifiers
URN: urn:nbn:se:kth:diva-216285DOI: 10.1103/PhysRevD.96.023013ISI: 000406548100001Scopus ID: 2-s2.0-85027039803OAI: oai:DiVA.org:kth-216285DiVA, id: diva2:1165597
Note

QC 20171213

Available from: 2017-12-13 Created: 2017-12-13 Last updated: 2017-12-13Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Search in DiVA

By author/editor
Visinelli, Luca
By organisation
Nordic Institute for Theoretical Physics NORDITA
In the same journal
Physical Review D: covering particles, fields, gravitation, and cosmology
Physical Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 178 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf