Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Characterization of the KTH high-flux solar simulator combining three measurement methods
KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Heat and Power Technology.ORCID iD: 0000-0003-1792-0551
KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Heat and Power Technology.ORCID iD: 0000-0003-3789-8654
KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Heat and Power Technology.ORCID iD: 0000-0003-4134-3520
KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Heat and Power Technology.
2017 (English)In: Energy, ISSN 0360-5442, E-ISSN 1873-6785, Vol. 141, 2091-2099 p.Article in journal (Refereed) Published
Abstract [en]

This paper presents the characterization of the first Fresnel lens-based High-Flux Solar Simulator (HFSS) showing the evaluation of the total thermal radiative power dependent on the aperture radius at the focal plane. This result can be directly applied to calculate the thermal power input into any solar receiver tested in the KTH HFSS. Three measurement setups were implemented and their results combined to assess and verify the characterization of the solar simulator: a thermopile sensor measuring radiative flux, a CMOS camera coupled with a Lambertian target to obtain flux maps, and a calorimeter to measure the total thermal power within an area of 300×300 mm. Finally, a Monte Carlo analysis was performed to calculate the total uncertainties associated to each setup and to combine them to obtain the simulator characterization. The final result shows a peak flux of 6.8 ± 0.35 MW/m2 with a thermal power of 14.7 ± 0.75 kW within an aperture of 180 mm in diameter at the focal plane, and a thermal-electrical conversion efficiency of 25.8 ± 0.3%. It was found very good repeatability and a stable energy output from the lamps during the experiments.

Place, publisher, year, edition, pages
Elsevier, 2017. Vol. 141, 2091-2099 p.
National Category
Energy Engineering
Identifiers
URN: urn:nbn:se:kth:diva-219891DOI: 10.1016/j.energy.2017.11.067Scopus ID: 2-s2.0-85036450427OAI: oai:DiVA.org:kth-219891DiVA: diva2:1166529
Note

QC 20171215

Available from: 2017-12-15 Created: 2017-12-15 Last updated: 2017-12-15Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Authority records BETA

Garrido, JorgeAichmayer, LukasWang, WujunLaumert, Björn

Search in DiVA

By author/editor
Garrido, JorgeAichmayer, LukasWang, WujunLaumert, Björn
By organisation
Heat and Power Technology
In the same journal
Energy
Energy Engineering

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 18 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf