Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Impact of H-uptake by forming gas annealing and ion implantation on photoluminescence of Si-nanoparticles
KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics.ORCID iD: 0000-0003-2562-0540
KTH, School of Information and Communication Technology (ICT).
Show others and affiliations
2018 (English)In: Physica Status Solidi (a) applications and materials science, ISSN 1862-6300, E-ISSN 1862-6319, Vol. 215, no 3, article id 1700444Article in journal (Refereed) Published
Abstract [en]

Silicon nanoparticles (SiNPs) are formed by implanting 70 keV Si+ into a SiO2-film and subsequent thermal annealing. SiNP samples are further annealed in forming gas. Another group of samples containing SiNP is implanted by 7.5 keV H+ and subsequently annealed in N2-atmosphere at 450 °C to reduce implantation damage. Nuclear reaction analysis (NRA) is employed to establish depth profiles of the H-concentration. Enhanced hydrogen concentrations are found close to the SiO2surface, with particularly high concentrations for the as-implanted SiO2. However, no detectable uptake of hydrogen is observed by NRA for samples treated by forming gas annealing (FGA). H-concentrations detected after H-implantation follow calculated implantation profiles. Photoluminescence (PL) spectroscopy is performed at room temperature to observe the SiNP PL. Whereas FGA is found to increase PL under certain conditions, i.e., annealing at high temperatures, increasing implantation fluence of H reduces the SiNP PL. Hydrogen implantation also introduces additional defect PL. After low-temperature annealing, the SiNP PL is found to improve, but the process is not found equivalently efficient as conventional FGA.

Place, publisher, year, edition, pages
John Wiley & Sons, 2018. Vol. 215, no 3, article id 1700444
Keywords [en]
H-quantification, nuclear reaction analysis, photoluminescence, silicon nanoparticles
National Category
Nano Technology
Identifiers
URN: urn:nbn:se:kth:diva-219544DOI: 10.1002/pssa.201700444ISI: 000424387300006Scopus ID: 2-s2.0-85031427795OAI: oai:DiVA.org:kth-219544DiVA, id: diva2:1166895
Funder
Swedish Research Council
Note

QC 20171219

Available from: 2017-12-17 Created: 2017-12-17 Last updated: 2018-02-22Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records BETA

Sychugov, IlyaSuvanam, Sethu SavedaHallén, Anders

Search in DiVA

By author/editor
Sychugov, IlyaSuvanam, Sethu SavedaLinnros, JanHallén, Anders
By organisation
Materials- and Nano PhysicsSchool of Information and Communication Technology (ICT)Integrated devices and circuits
In the same journal
Physica Status Solidi (a) applications and materials science
Nano Technology

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 103 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf