Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Biobased Nanographene Oxide Creates Stronger Chitosan Hydrogels with Improved Adsorption Capacity for Trace Pharmaceuticals
KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology.
KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology.
KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology.ORCID iD: 0000-0002-5850-8873
KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology.ORCID iD: 0000-0002-7790-8987
2017 (English)In: ACS Sustainable Chemistry & Engineering, ISSN 2168-0485, Vol. 5, no 12, p. 11525-11535Article in journal (Refereed) Published
Abstract [en]

A promising green strategy for the fabrication of fully biobased chitosan adsorbents for wastewater purification is presented. Nanographene oxide (nGO)-type carbon dots were derived from chitosan (nGOCS) or from cellulose (nGOCL) through a two-step process including microwave-assisted hydrothermal carbonization and oxidation. Finally, nGO were evaluated as biobased property enhancers in chitosan hydrogel adsorbents. Macroporous chitosan hydrogels were synthesized by cross-linking with genipin, and the incorporation of nGO into these hydrogels was shown to facilitate the cross-linking reaction leading to more robust 3D cross-linked networks. This was evidenced by the increased storage modulus and by the swelling ratio that decreased from 5.7 for pristine chitosan hydrogel to 2.6 for hydrogel with 5 mg/mL nGOCS and 3.3 for hydrogel with 5 mg/mL nGOCL. As a further proof of the concept the hydrogels were shown to be effective adsorbent for the common anti-inflammatory drug diclofenac sodium (DCF). Here, the addition of nGO promoted the DCF adsorption process leading to 100% removal of DCF after only 5 h. The synergistic effect of electrostatic interactions, hydrogen bonding, and pi-pi stacking could explain the high adsorption of DCF on the hydrogels. The developed biobased CS/nGO hydrogels are thus promising adsorbents with great potential for purification of trace pharmaceuticals from wastewater.

Place, publisher, year, edition, pages
American Chemical Society (ACS), 2017. Vol. 5, no 12, p. 11525-11535
Keywords [en]
Graphene oxide, Carbon dot, Hydrogel, Diclofenac sodium, Genipin, Microwave, Waste water purification, Adsorbent
National Category
Polymer Chemistry Polymer Technologies
Identifiers
URN: urn:nbn:se:kth:diva-220462DOI: 10.1021/acssuschemeng.7b02809ISI: 000417341900044Scopus ID: 2-s2.0-85042358833OAI: oai:DiVA.org:kth-220462DiVA, id: diva2:1168591
Note

QC 20171221

Available from: 2017-12-21 Created: 2017-12-21 Last updated: 2018-06-25Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records BETA

Feng, ZhaoxuanSimeone, AntonioOdelius, KarinHakkarainen, Minna

Search in DiVA

By author/editor
Feng, ZhaoxuanSimeone, AntonioOdelius, KarinHakkarainen, Minna
By organisation
Fibre and Polymer Technology
Polymer ChemistryPolymer Technologies

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 53 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf