Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Biobased Nanographene Oxide Creates Stronger Chitosan Hydrogels with Improved Adsorption Capacity for Trace Pharmaceuticals
KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology.
KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology.
KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology.ORCID iD: 0000-0002-5850-8873
KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology.ORCID iD: 0000-0002-7790-8987
2017 (English)In: ACS Sustainable Chemistry & Engineering, ISSN 2168-0485, Vol. 5, no 12, p. 11525-11535Article in journal (Refereed) Published
Abstract [en]

A promising green strategy for the fabrication of fully biobased chitosan adsorbents for wastewater purification is presented. Nanographene oxide (nGO)-type carbon dots were derived from chitosan (nGOCS) or from cellulose (nGOCL) through a two-step process including microwave-assisted hydrothermal carbonization and oxidation. Finally, nGO were evaluated as biobased property enhancers in chitosan hydrogel adsorbents. Macroporous chitosan hydrogels were synthesized by cross-linking with genipin, and the incorporation of nGO into these hydrogels was shown to facilitate the cross-linking reaction leading to more robust 3D cross-linked networks. This was evidenced by the increased storage modulus and by the swelling ratio that decreased from 5.7 for pristine chitosan hydrogel to 2.6 for hydrogel with 5 mg/mL nGOCS and 3.3 for hydrogel with 5 mg/mL nGOCL. As a further proof of the concept the hydrogels were shown to be effective adsorbent for the common anti-inflammatory drug diclofenac sodium (DCF). Here, the addition of nGO promoted the DCF adsorption process leading to 100% removal of DCF after only 5 h. The synergistic effect of electrostatic interactions, hydrogen bonding, and pi-pi stacking could explain the high adsorption of DCF on the hydrogels. The developed biobased CS/nGO hydrogels are thus promising adsorbents with great potential for purification of trace pharmaceuticals from wastewater.

Place, publisher, year, edition, pages
American Chemical Society (ACS), 2017. Vol. 5, no 12, p. 11525-11535
Keywords [en]
Graphene oxide, Carbon dot, Hydrogel, Diclofenac sodium, Genipin, Microwave, Waste water purification, Adsorbent
National Category
Polymer Chemistry Polymer Technologies
Identifiers
URN: urn:nbn:se:kth:diva-220462DOI: 10.1021/acssuschemeng.7b02809ISI: 000417341900044Scopus ID: 2-s2.0-85042358833OAI: oai:DiVA.org:kth-220462DiVA, id: diva2:1168591
Note

QC 20171221

Available from: 2017-12-21 Created: 2017-12-21 Last updated: 2019-04-10Bibliographically approved
In thesis
1. From Polysaccharides to Functional Materials for Trace Pharmaceutical Adsorption
Open this publication in new window or tab >>From Polysaccharides to Functional Materials for Trace Pharmaceutical Adsorption
2019 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

The transition to bioeconomy will reduce our dependency on fossil fuels as well as contribute to a more sustainable society. Within this framework, exploitation and development of renewable substitutes to petroleum-based products provides feasible roadmap for the material design. Here a perspective is provided to how the natural polysaccharides chitosan (CS) and/or cellulose (CL) could be elaborated and transformed to high-performance materials with the explicit aim of removing trace pharmaceutical contaminants from the wastewater, thus facilitating the sustainable development. In the first part of the thesis, chitosan and cellulose were converted to the carbon spheres (C-sphere) through a microwave-assisted hydrothermal carbonization process, and C-sphere was further broken down to the nanographene oxide (nGO) via a simple oxidation route. On this foundation, a green pathway was developed for fabrication of biobased materials for wastewater purification. First, macroporous chitosan-based composite hydrogels with controllable properties were developed, where chitosan-derived nGO worked as a functional property enhancer. Second, a further development changing from the bulky hydrogels to microgels consisting of CS composite particles in the microscopic size was achieved by a fast one-pot spraying-drying process. The crosslinking reaction occurred in situ during the spray-drying. Last, the C-sphere by-itself was also believed to be a potential adsorbent for wastewater contaminants. In the next step the prepared systems were evaluated for their capacity to adsorb pharmaceutical contaminants. Diclofenac sodium (DCF) was utilized as the model drug, and the three fabricated bio-adsorbents all demonstrated effective DCF adsorption performance, with the adsorption efficiency varying from 65.6 to 100%. Moreover, the DCF adsorption kinetics, isotherms and thermodynamic study were also investigated to reveal the nature of the adsorption process with the different materials. Finally, chitosan-based microspheres were selected for the reusability study, with the adsorption efficiency above 70% retained after six adsorption-desorption cycles, thus further endowing the promising potential of the fabricated bio-adsorbents for commercial applications.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2019. p. 48
Series
TRITA-CBH-FOU ; 2019:21
Keywords
Chitosan, cellulose, nanographene oxide, carbon spheres, hydrogel, microsphere, adsorbent, pharmaceutical, microwave, spray-drying
National Category
Environmental Engineering Nano Technology Textile, Rubber and Polymeric Materials Physical Chemistry Polymer Chemistry
Research subject
Fibre and Polymer Science
Identifiers
urn:nbn:se:kth:diva-248454 (URN)978-91-7873-167-1 (ISBN)
Public defence
2019-05-23, F3, Lindstedtsvägen 26, Stockholm, 10:00 (English)
Opponent
Supervisors
Note

QC 20190411

Available from: 2019-04-11 Created: 2019-04-09 Last updated: 2019-05-27Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records BETA

Feng, ZhaoxuanSimeone, AntonioOdelius, KarinHakkarainen, Minna

Search in DiVA

By author/editor
Feng, ZhaoxuanSimeone, AntonioOdelius, KarinHakkarainen, Minna
By organisation
Fibre and Polymer Technology
Polymer ChemistryPolymer Technologies

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 232 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf