Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Fast-charging to a partial state of charge in lithium-ion batteries: A comparative ageing study
KTH, School of Chemical Science and Engineering (CHE), Chemical Engineering and Technology, Applied Electrochemistry.
KTH, School of Chemical Science and Engineering (CHE), Chemical Engineering and Technology, Applied Electrochemistry.ORCID iD: 0000-0003-4901-5820
KTH, School of Chemical Science and Engineering (CHE), Chemical Engineering and Technology, Applied Electrochemistry.ORCID iD: 0000-0002-9392-9059
KTH, School of Chemical Science and Engineering (CHE), Chemical Engineering and Technology, Applied Electrochemistry.ORCID iD: 0000-0001-9203-9313
Show others and affiliations
2017 (English)In: Journal of Energy Storage, ISSN 2352-152X, Vol. 13, 325-333 p.Article in journal (Refereed) Published
Abstract [en]

At electric vehicle fast-charging stations, it is generally recommended to avoid charging beyond similar to 80% State-of-Charge (SOC) since topping-off to full capacity disproportionately increases the charging time. This necessitates studying its long-term impact compared to slower rate charging to full capacity typical of home or residential charging. Here we present the long-term ageing effects on commercial 18650 NMC-LMO/graphite cell cycled between 2.6-4.2 V at three different charging protocols: 1.5 C-rate fast-partial charging ( to 82.5% SOC), 0.5 C-rate slow standard charging without or with a constant-voltage step (to 93% or 100% SOC). Quantitative discharge-curve and postmortem analyses are used to evaluate ageing. The results show that ageing rate increases in the order: fast-partial charging < standard charging < standard charging with constant-voltage period, indicating that higher SOC-range near full capacity is more detrimental to battery life than fast-charging. The capacity fade is totally dominated by cyclable-lithium loss. The similar to 8% NMC-LMO active material loss has negligible impact on the cell capacity fade due to the electrodes excess material in the fresh cell and its moderate loss rate with ageing compared to the cyclable-lithium. Similar ageing modes in terms of capacity fade and impedance rise are found irrespective of the charging protocol.

Place, publisher, year, edition, pages
Elsevier, 2017. Vol. 13, 325-333 p.
Keyword [en]
Fast-charging, Charging to partial SOC, Non-destructive analysis, Lithium-ion battery ageing, Battery management, Charging protocol
National Category
Energy Engineering
Identifiers
URN: urn:nbn:se:kth:diva-220495DOI: 10.1016/j.est.2017.07.004ISI: 000417183300033Scopus ID: 2-s2.0-85028014032OAI: oai:DiVA.org:kth-220495DiVA: diva2:1169054
Funder
Swedish Energy AgencyStandUp
Note

QC 20171222

Available from: 2017-12-22 Created: 2017-12-22 Last updated: 2017-12-22Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Authority records BETA

Klett, MatildaBehm, MårtenLindbergh, Göran

Search in DiVA

By author/editor
Mussa, Abdilbari ShifaKlett, MatildaBehm, MårtenLindbergh, GöranLindström, Rakel Wreland
By organisation
Applied Electrochemistry
Energy Engineering

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 3 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf