Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Active Sites Intercalated Ultrathin Carbon Sheath on Nanowire Arrays as Integrated Core-Shell Architecture: Highly Efficient and Durable Electrocatalysts for Overall Water Splitting
Show others and affiliations
2017 (English)In: Small, ISSN 1613-6810, E-ISSN 1613-6829, Vol. 13, no 46, article id UNSP 1702018Article in journal (Refereed) Published
Abstract [en]

The development of active bifunctional electrocatalysts with low cost and earth-abundance toward oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) remains a great challenge for overall water splitting. Herein, metallic Ni4Mo nanoalloys are firstly implanted on the surface of NiMoOx nanowires array (NiMo/NiMoOx) as metal/metal oxides hybrid. Inspired by the superiority of carbon conductivity, an ultrathin nitrogen-doped carbon sheath intercalated NiMo/NiMoOx (NC/NiMo/NiMoOx) nanowires as integrated core-shell architecture are constructed. The integrated NC/NiMo/NiMoOx array exhibits an overpotential of 29 mV at 10 mA cm(-2) and a low Tafel slope of 46 mV dec(-1) for HER due to the abundant active sites, fast electron transport, low charge-transfer resistance, unique architectural structure and synergistic effect of carbon sheath, nanoalloys, and oxides. Moreover, as OER catalysts, the NC/NiMo/NiMoOx hybrids require an overpotential of 284 mV at 10 mA cm(-2). More importantly, the NC/NiMo/NiMoOx array as a highly active and stable electrocatalyst approaches approximate to 10 mA cm(-2) at a voltage of 1.57 V, opening an avenue to the rational design and fabrication of the promising electrode materials with architecture structures toward the electrochemical energy storage and conversion.

Place, publisher, year, edition, pages
Wiley-VCH Verlagsgesellschaft, 2017. Vol. 13, no 46, article id UNSP 1702018
Keywords [en]
core-shell architecture, electrocatalysts, fast electron transfer, overall water splitting, ultrathin carbon sheath
National Category
Chemical Sciences
Identifiers
URN: urn:nbn:se:kth:diva-220455DOI: 10.1002/smll.201702018ISI: 000417498700002OAI: oai:DiVA.org:kth-220455DiVA, id: diva2:1170616
Funder
Swedish Energy AgencyKnut and Alice Wallenberg Foundation
Note

QC 20180104

Available from: 2018-01-04 Created: 2018-01-04 Last updated: 2018-01-04Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full text

Authority records BETA

Sun, Licheng

Search in DiVA

By author/editor
Sun, Licheng
By organisation
Organic ChemistryZhejiang-KTH Joint Research Center of Photonics, JORCEP
In the same journal
Small
Chemical Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 5 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf