Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Numerical Simulation of Micro-Galvanic Corrosion of Al Alloys: Effect of Chemical Factors
KTH, School of Chemical Science and Engineering (CHE), Chemistry, Surface and Corrosion Science. University of Science and Technology Beijing, China.
KTH, School of Chemical Science and Engineering (CHE), Chemistry, Surface and Corrosion Science.
KTH, School of Chemical Science and Engineering (CHE), Chemistry, Surface and Corrosion Science.ORCID iD: 0000-0002-4431-0671
2017 (English)In: Journal of the Electrochemical Society, ISSN 0013-4651, E-ISSN 1945-7111, Vol. 164, no 13, p. C768-C778Article in journal (Refereed) Published
Abstract [en]

A finite element model for simulating the propagation of micro-galvanic corrosion of Al alloys induced by intermetallic particle was established to reveal the dynamic changes including a moving dissolution boundary, deposition of reaction products and their blocking effect. This model has previously been used to study the influence of geometrical factors such as the particle size and width of the anodic ring. In this work, we explore effects of chemical factors including pH and bulk concentration of O-2 by using chemical-dependent electrochemical kinetics as input parameters. The simulations reveal that the micro-galvanic corrosion rate is slowest at pH = 6. For pH > 6, the rise of pH increases the dissolution rate of Al and also the deposition rate of Al(OH)(3), leading to a faster but more short localized Al dissolution. For pH < 6, the decline of pH accelerates Al dissolution and inhibits Al(OH)(3) deposition, leading to a faster and more long lasting Al dissolution. At pH <= 4, deposition of Al(OH)(3) becomes negligible, and localized corrosion will propagate continuously. Within the O-2 concentration range relevant for atmospheric conditions, a lower O-2 concentration in the solution leads to a slower rate of micro-galvanic corrosion.

Place, publisher, year, edition, pages
Electrochemical Society Inc , 2017. Vol. 164, no 13, p. C768-C778
National Category
Corrosion Engineering
Identifiers
URN: urn:nbn:se:kth:diva-220868DOI: 10.1149/2.0691713jesISI: 000418409800091Scopus ID: 2-s2.0-85033671822OAI: oai:DiVA.org:kth-220868DiVA, id: diva2:1171701
Funder
Swedish Foundation for Strategic Research , RMA11-0090
Note

QC 20180108

Available from: 2018-01-08 Created: 2018-01-08 Last updated: 2018-05-08Bibliographically approved
In thesis
1. FEM Modelling of Micro-galvanic Corrosion in Al Alloys Induced by Intermetallic Particles: Exploration of Chemical and Geometrical Effects
Open this publication in new window or tab >>FEM Modelling of Micro-galvanic Corrosion in Al Alloys Induced by Intermetallic Particles: Exploration of Chemical and Geometrical Effects
2018 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Localized corrosion, such as pitting, crevice corrosion or galvanic corrosion, is a long-standing phenomenon that can greatly limit the life of metallic materials. For decades experimental methods have been used to try to understand the underlying physical, chemical and electrochemical processes that control localized corrosion in order to find effective protection methods against its propagation. The complexity of the phenomenon and its small geometric size have often severely restricted the basic understanding of local corrosion. In recent decades, computational methods have been developed as an alternative to the experimental methods. Compared to experimental methods, modeling and numerical simulation enable complicated systems to be systematically investigated without considering the inherent constraints of experimental methods.

    In the current Doctoral thesis, advanced calculation methodology has been used to study galvanic corrosion of an aluminum alloy with geometric resolution at micrometer level. The computational platform has been a commercial FEM-based software, COMSOL Multiphysics, which was combined with another software, Matlab. The current model system consists of a semi-spherical intermetallic particle, surrounded by a pure aluminum matrix. The aluminum surface is covered by an inert passive film, except for a ring-shaped surface around the particle itself. By assuming that the particle is electrochemically more noble than aluminum, it acts as a cathode and the surrounding aluminum ring as anode. By utilizing the FEM-based software, it has been possible to incorporate important physicochemical reactions, including the electrochemical anode and cathode reactions of the individual phases, mass transport of various chemical compounds formed during ongoing electrochemistry, homogeneous reactions in the electrolyte, as well as deposition of corrosion products consisting of Al(OH)3 along parts of the anodic area.

    What has made this study a significant step forward is that not only chemical changes but also geometrical changes have been taken into consideration in the simulation of ongoing micro-galvanic corrosion. Particularly challenging has been to mathematically master the gradual deposition of compact Al(OH)3 on an aluminum surface which gradually dissolves anodically. In the initial modeling work, the deposition of Al(OH)3 was assumed to occur only on the electrode surface, resulting in a gradual blockage of surface activity. In an even more advanced stage, the modeling has also sought to simulate the effect of a deposited porous film of Al(OH)3, formed through homogeneous reactions in the electrolyte. By taking into account inhibited diffusion and migration of chemical products that the porous film causes, its sterically inhibiting effect has for the first time been quantitatively interpreted. The porous corrosion product can most closely resemble the lid experimentally observed above local corrosion attacks, which leads to an even more diminished surface activity in electrochemical reactions compared with the deposition of only compact corrosion products on the anode surface.

    The kinetic model has resulted in a significantly deeper insight into the mechanism of micro-galvanic corrosion of the investigated system. The simulation has been shown to predict the time-dependent geometric changes of the anodically dissolved aluminum surface as well as the flow and distribution of generated chemical products. Contrary to the widely accepted perception that Al(OH)3 is not stable in the occluded acidified electrolyte environment, the calculations predict a higher local pH in the occluded electrolyte. This means that insoluble Al(OH)3 can be deposited on the electrode surface, the blocking effect of which may lead to a termination of the micro-galvanic corrosion. If the ring width is initially 0.5 μm or less, transport of OH- ions from the cathode surface to the occluded electrolyte environment is limited, leading to a local acidification within the occluded dissolving volume. At a given anodic ring width, an increased radius of the cathodic particle instead leads to an increased anodic dissolution rate by formation of a larger area for the cathode reaction. Variation of the chemical parameters in the electrolyte also shows that the simulated micro-galvanic corrosion rate of aluminum has a minimum at pH = 6. Both more acidic and more alkaline conditions result in an elevated anodic dissolution of aluminum. When pH ≤ 4, the deposition of Al(OH)3  becomes negligible, and the micro-galvanic corrosion will continue uninterrupted, completely in accordance with experimental data.

Place, publisher, year, edition, pages
Stockholm, Sweden: KTH Royal Institute of Technology, 2018
Series
TRITA-CBH-FOU ; 2018:12
Keywords
Finite Element Method (FEM), Modelling, Micro-galvanic corrosion, Al alloy, corrosion product deposition, chemical factors, steric hindrance effect
National Category
Corrosion Engineering
Research subject
Chemistry
Identifiers
urn:nbn:se:kth:diva-227315 (URN)978-91-7729-740-6 (ISBN)
Public defence
2018-06-08, Hörsal F3, Lindstedtsvägen 26, KTH campus, Stockholm, 14:00 (English)
Opponent
Supervisors
Note

QC 20180509

Available from: 2018-05-09 Created: 2018-05-08 Last updated: 2018-05-09Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records BETA

Pan, Jinshan

Search in DiVA

By author/editor
Yin, LitaoLeygraf, ChristoferPan, Jinshan
By organisation
Surface and Corrosion Science
In the same journal
Journal of the Electrochemical Society
Corrosion Engineering

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 42 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf