Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Monovacancy and divacancy formation and migration in copper: a first-principles theory
KTH, Superseded Departments, Materials Science and Engineering.
2004 (English)In: Physical Review B. Condensed Matter and Materials Physics, ISSN 1098-0121, E-ISSN 1550-235X, Vol. 70, no 11, 115108- p.Article in journal (Refereed) Published
Abstract [en]

The formation and migration of monovacancies and divacancies in copper have been studied from first-principles in order to resolve the discrepancies between previously published experimental and theoretical data. The monovacancy and divacancy formation, migration and binding enthalpies as well as the formation volumes have been calculated in the framework of a plane-wave pseudopotential implementation of the density functional theory, with full structural relaxations included. The monovacancy and divacancy formation entropies have been estimated from experimental data by performing a least-squares analysis. We show that the complete set of first-principles data, taking into account the presence of both vacancies and divacancies as well as the temperature dependence of the formation enthalpies and entropies allow one to reproduce the Arrhenius plot of the total vacancy concentration and the diffusion coefficient, both in good agreement with the most accurate experiments.

Place, publisher, year, edition, pages
2004. Vol. 70, no 11, 115108- p.
National Category
Other Engineering and Technologies not elsewhere specified
Identifiers
URN: urn:nbn:se:kth:diva-6884DOI: 10.1103/PhysRevB.70.115108ISI: 000224209500028Scopus ID: 2-s2.0-19744381786OAI: oai:DiVA.org:kth-6884DiVA: diva2:11724
Note
QC 20100622Available from: 2007-03-14 Created: 2007-03-14 Last updated: 2017-12-14Bibliographically approved
In thesis
1. From the Electronic Structure of Point Defects to Functional Properties of Metals and Ceramics
Open this publication in new window or tab >>From the Electronic Structure of Point Defects to Functional Properties of Metals and Ceramics
2007 (English)Doctoral thesis, comprehensive summary (Other scientific)
Abstract [en]

Point defects are an inherent part of crystalline materials and they influence important physical and chemical properties, such as diffusion, hardness, catalytic activity and phase stability. Increased understanding of point defects enables us to tailor the defect-related properties to the application at hand. Modeling and simulation have a prominent role in acquiring this knowledge. In this thesis thermodynamic and kinetic properties of point defects in metals and ceramics are studied using first-principles calculations based on density functional theory. Phenomenological models are used to translate the atomic level properties, obtained from the first-principles calculations, into functional materials properties. The next paragraph presents the particular problems under study.

The formation and migration of vacancies and simple vacancy clusters in copper are investigated by calculating the energies associated with these processes. The structure, stability and electronic properties of the low-oxygen oxides of titanium, TiOx with 1/3 < x < 3/2, are studied and the importance of structural vacancies is demonstrated. We develop an integrated first-principles and Calphad approach to calculate phase diagrams in the titanium-carbon-nitrogen system, with particular focus on vacancy-induced ordering of the substoichiometric

carbonitride phase, TiCxNy (x+y < 1). The possibility of forming higher oxides of plutonium than plutonium dioxide is explored by calculating the enthalpies for nonstoichiometric defect-containing compounds and the analysis shows that such oxidation is only produced by strong oxidants. For ceria (CeO2) doped with trivalent ions from the lanthanide series we probe the connection between the choice of a dopant and the improvement of ionic conductivity by studying the oxygen-vacancy formation and migration properties. The significance of minimizing the dopant-vacancy interactions is highlighted. We investigate the redox thermodynamics of CeO2-MO2 solid solutions with M being Ti, Zr, Hf, Th, Si, Ge, Sn or Pb and show that reduction is facilitated by small solutes.

The results in this thesis are relevant for the performance of solid electrolytes, which are an integral part of solid oxide fuel cells, oxygen storage materials in automotive three-way catalysts, nuclear waste materials and cutting tool materials.

Place, publisher, year, edition, pages
Stockholm: Materialvetenskap, 2007
Keyword
first principles, ab initio, density functional theory, Calphad, point defects, diffusion, solid electrolytes, oxygen storage materials
National Category
Other Engineering and Technologies not elsewhere specified
Identifiers
urn:nbn:se:kth:diva-4309 (URN)978-91-7178-590-9 (ISBN)
Public defence
2007-03-30, F2, Lindstedtsvägen 26, Stockholm, 10:00
Opponent
Supervisors
Note
QC 20100622Available from: 2007-03-14 Created: 2007-03-14 Last updated: 2012-03-22Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Search in DiVA

By author/editor
Andersson, David A.
By organisation
Materials Science and Engineering
In the same journal
Physical Review B. Condensed Matter and Materials Physics
Other Engineering and Technologies not elsewhere specified

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 140 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf