Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Nodal-line semimetals from Weyl superlattices
Show others and affiliations
2017 (English)In: Physical Review B, ISSN 2469-9950, E-ISSN 2469-9969, Vol. 96, no 24, 245101Article in journal (Refereed) Published
Abstract [en]

The existence and topological classification of lower-dimensional Fermi surfaces is often tied to the crystal symmetries of the underlying lattice systems. Artificially engineered lattices, such as heterostructures and other superlattices, provide promising avenues to realize desired crystal symmetries that protect lower-dimensional Fermi surfaces, such as nodal lines. In this work, we investigate a Weyl semimetal subjected to spatially periodic onsite potential, giving rise to several phases, including a nodal-line semimetal phase. In contrast to proposals that purely focus on lattice symmetries, the emergence of the nodal line in this setup does not require small spin-orbit coupling, but rather relies on its presence. We show that the stability of the nodal line is understood from reflection symmetry and a combination of a fractional lattice translation and charge-conjugation symmetry. Depending on the choice of parameters, this model exhibits drumhead surface states that are exponentially localized at the surface, or weakly localized surface states that decay into the bulk at all energies.

Place, publisher, year, edition, pages
2017. Vol. 96, no 24, 245101
National Category
Physical Sciences
Identifiers
URN: urn:nbn:se:kth:diva-220263DOI: 10.1103/PhysRevB.96.245101ISI: 000416848200003Scopus ID: 2-s2.0-85039455476OAI: oai:DiVA.org:kth-220263DiVA: diva2:1173181
Note

QC 20180111

Available from: 2018-01-11 Created: 2018-01-11 Last updated: 2018-01-11Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Authority records BETA

Bardarson, Jens H.

Search in DiVA

By author/editor
Bardarson, Jens H.
By organisation
Condensed Matter Theory
In the same journal
Physical Review B
Physical Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf