Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Manycast, Anycast, and Replica Placement in Optical Inter-Datacenter Networks
KTH, School of Information and Communication Technology (ICT), Communication Systems, CoS, Optical Network Laboratory (ON Lab).
KTH, School of Information and Communication Technology (ICT), Communication Systems, CoS, Optical Network Laboratory (ON Lab).ORCID iD: 0000-0001-5600-3700
2017 (English)In: Journal of Optical Communications and Networking, ISSN 1943-0620, E-ISSN 1943-0639, Vol. 9, no 12, p. 1161-1171Article in journal (Refereed) Published
Abstract [en]

The expanding adoption of cloud-based services in recent years puts stringent requirements on datacenters (DCs) and their interconnection networks. Optical inter-datacenter networks represent the only viable option for satisfying the huge bandwidth required to replicate and update content for cloud-based services across geographically dispersed datacenters. In addition to content replication and synchronization, optical inter-datacenter networks must also support communication between datacenters and end-users. The resulting new traffic patterns and the enormous traffic volumes call for new capacityefficient approaches for inter-datacenter network designs that incorporate both transport and datacenter resource planning. This paper introduces an integrated approach to optimally place content replicas across DCs by concurrently solving the routing and wavelength assignment (RWA) problem for both inter-DC content replication and synchronization traffic following the manycast routing paradigm, and end-user-driven user-to-DC communication following the anycast routing paradigm, with the objective to reduce the overall network capacity usage. To attain this goal, the manycast, anycast, and replica placement (MARP) problem is formulated as an integer linear program to find optimal solutions for smaller problem instances. Due to the problem complexity, a scalable and efficient heuristic algorithm is developed to solve larger network scenarios. Simulation results demonstrate that the proposed integrated MARP strategy can significantly reduce the network capacity usage when compared to the benchmarking replica placement and RWA schemes aimed at minimizing the resources consumed by either of the two types of traffic independently.

Place, publisher, year, edition, pages
Optical Society of America, 2017. Vol. 9, no 12, p. 1161-1171
Keywords [en]
Anycast routing, Content placement, Interdatacenter networks, Manycast routing
National Category
Communication Systems
Identifiers
URN: urn:nbn:se:kth:diva-221026DOI: 10.1364/JOCN.9.001161ISI: 000418764400010OAI: oai:DiVA.org:kth-221026DiVA, id: diva2:1173348
Funder
Swedish Research Council, 2014-6230
Note

QC 20180112

Available from: 2018-01-12 Created: 2018-01-12 Last updated: 2018-01-12Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full text

Authority records BETA

Muhammad, AjmalFurdek, Marija

Search in DiVA

By author/editor
Muhammad, AjmalFurdek, Marija
By organisation
Optical Network Laboratory (ON Lab)
In the same journal
Journal of Optical Communications and Networking
Communication Systems

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 9 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf