Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Estimating the Strength of Single Chitin Nanofibrils via Sonication-Induced Fragmentation
KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology. KTH, School of Chemical Science and Engineering (CHE), Centres, Wallenberg Wood Science Center.
Show others and affiliations
2017 (English)In: Biomacromolecules, ISSN 1525-7797, E-ISSN 1526-4602, Vol. 18, no 12, p. 4405-4410Article in journal (Refereed) Published
Abstract [en]

We report the mechanical strength of native chitin nanofibrils. Highly crystalline alpha-chitiri nanofibrils Were purified from filaments produced by a microalgae Phaeocystis globosa, and two types of beta-chitin nariofibrils were purified from pens of a squid Loligo bleekeri and tubes of a tubeworm Lamellibrachia satsuma, with relatively low and high crystallinity, respectively. These chitin nanofibrils were fully dispersed in water. The strength of individualized nanofibrils was estimated using cavitation induced tensile fracture of nanoscale filaments in a liquid medium. Both types of beta-chitin nanofibrils exhibited similar strength values of approximately 3 GP; in contrast, the alpha-chitin nanofibrils exhibited a much lower strength value of 1.6 GPa. These strength estimates suggest that the tensile strength of chitin nanofibrils is governed by the molecular packing modes of chitin rather than their crystallinity.

Place, publisher, year, edition, pages
American Chemical Society (ACS), 2017. Vol. 18, no 12, p. 4405-4410
National Category
Biochemistry and Molecular Biology
Identifiers
URN: urn:nbn:se:kth:diva-221022DOI: 10.1021/acs.biomac.7b01467ISI: 000418109200055PubMedID: 29135235Scopus ID: 2-s2.0-85038215216OAI: oai:DiVA.org:kth-221022DiVA, id: diva2:1173388
Note

QC 20180112

Available from: 2018-01-12 Created: 2018-01-12 Last updated: 2018-01-12Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textPubMedScopus

Search in DiVA

By author/editor
Berglund, Lars A.
By organisation
Fibre and Polymer TechnologyWallenberg Wood Science Center
In the same journal
Biomacromolecules
Biochemistry and Molecular Biology

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 28 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf