Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Simulations of thermionic suppression during tungsten transient melting experiments
Show others and affiliations
2017 (English)In: Physica Scripta, ISSN 0031-8949, E-ISSN 1402-4896, Vol. T170, article id 014069Article in journal (Refereed) Published
Abstract [en]

Plasma-facing components receive enormous heat fluxes under steady state and especially during transient conditions that can even lead to tungsten (W) melting. Under these conditions, the unimpeded thermionic current density emitted from the W surfaces can exceed the incident plasma current densities by several orders of magnitude triggering a replacement current which drives melt layer motion via the J x B force. However, in tokamaks, the thermionic current is suppressed by space-charge effects and prompt re-deposition due to gyro-rotation. We present comprehensive results of particle-in-cell modelling using the 2D3V code SPICE2 for the thermionic emissive sheath of tungsten. Simulations have been performed for various surface temperatures and selected inclinations of the magnetic field corresponding to the leading edge and sloped exposures. The surface temperature dependence of the escaping thermionic current and its limiting value are determined for various plasma parameters; for the leading edge geometry, the results agree remarkably well with the Takamura analytical model. For the sloped geometry, the limiting value is observed to be proportional to the thermal electron current and a simple analytical expression is proposed that accurately reproduces the numerical results.

Place, publisher, year, edition, pages
Institute of Physics (IOP), 2017. Vol. T170, article id 014069
National Category
Fusion, Plasma and Space Physics
Identifiers
URN: urn:nbn:se:kth:diva-220610DOI: 10.1088/1402-4896/aa9209ISI: 000417694700014OAI: oai:DiVA.org:kth-220610DiVA, id: diva2:1174220
Conference
16th International Conference on Plasma-Facing Materials and Components for Fusion Applications (PFMC), MAY, 2017, GERMANY
Note

QC 20180115

Available from: 2018-01-15 Created: 2018-01-15 Last updated: 2018-01-15Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full text

Authority records BETA

Tolias, PanagiotisRatynskaia, Svetlana V.

Search in DiVA

By author/editor
Tolias, PanagiotisRatynskaia, Svetlana V.
In the same journal
Physica Scripta
Fusion, Plasma and Space Physics

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 3 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf