Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Study of the material of the ATLAS inner detector for Run 2 of the LHC
KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.ORCID iD: 0000-0001-6945-1916
KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
Show others and affiliations
Number of Authors: 28682017 (English)In: Journal of Instrumentation, ISSN 1748-0221, E-ISSN 1748-0221, Vol. 12, article id P12009Article in journal (Refereed) Published
Abstract [en]

The ATLAS inner detector comprises three different sub-detectors: the pixel detector, the silicon strip tracker, and the transition-radiation drift-tube tracker. The Insertable B-Layer, a new innermost pixel layer, was installed during the shutdown period in 2014, together with modifications to the layout of the cables and support structures of the existing pixel detector. The material in the inner detector is studied with several methods, using a low-luminosity root s = 13 TeV pp collision sample corresponding to around 2.0 nb(-1) collected in 2015 with the ATLAS experiment at the LHC. In this paper, the material within the innermost barrel region is studied using reconstructed hadronic interaction and photon conversion vertices. For the forward rapidity region, the material is probed by a measurement of the efficiency with which single tracks reconstructed from pixel detector hits alone can be extended with hits on the track in the strip layers. The results of these studies have been taken into account in an improved description of the material in the ATLAS inner detector simulation, resulting in a reduction in the uncertainties associated with the charged-particle reconstruction efficiency determined from simulation.

Place, publisher, year, edition, pages
Institute of Physics (IOP), 2017. Vol. 12, article id P12009
National Category
Astronomy, Astrophysics and Cosmology
Identifiers
URN: urn:nbn:se:kth:diva-221435DOI: 10.1088/1748-0221/12/12/P12009ISI: 000417761100006Scopus ID: 2-s2.0-85039771572OAI: oai:DiVA.org:kth-221435DiVA, id: diva2:1174966
Note

QC 20180117

Available from: 2018-01-17 Created: 2018-01-17 Last updated: 2018-01-17Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records BETA

Kastanas, Konstatinos A.Lund-Jensen, BengtRipellino, GiuliaSidebo, P. EdvinStrandberg, Jonas

Search in DiVA

By author/editor
Kastanas, Konstatinos A.Lund-Jensen, BengtRipellino, GiuliaSidebo, P. EdvinStrandberg, Jonas
By organisation
Particle and Astroparticle Physics
In the same journal
Journal of Instrumentation
Astronomy, Astrophysics and Cosmology

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 60 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf