Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Influence of Sleeper Passing Frequency on Short Span Bridges: Validation against Measured Results
KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Structural Engineering and Bridges.ORCID iD: 0000-0003-2372-5234
KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Structural Engineering and Bridges.
KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Structural Engineering and Bridges.ORCID iD: 0000-0002-8926-2140
2017 (English)Conference paper, Published paper (Refereed)
Abstract [en]

The railway track, being discretely supported at each sleeper, has a varying stiffness. The periodic loading from the wheels passing the sleepers at a certain speed introduces the sleeper passing frequency. This excitation of the track is a well-known source of vibration for track embankments. However, the interaction between the sleeper passing frequency and the railway bridge vibration is not well studied. In this paper, a 2D finite element model is calibrated against measured frequency response functions from a short span portal frame bridge. The track is modelled with the rail as a beam resting on discrete spring–dashpots at each sleeper location. In replicating the measured signals from train passages, the train load is typically idealized as moving forces. For the case study bridge, the resulting bridge deck acceleration amplitudes from such a moving force analysis were significantly lower compared to the measured signal. It is shown that if the wheel mass is introduced in the model, and thus the sleeper passing frequency, the model provides results in good agreement with measured data. Thus, it is demonstrated that the bridge deck vibration can be greatly amplified if the sleeper passing frequency matches a bridge frequency. A sensitivity analysis shows that the effect of the sleeper passing frequency is sensitive to track stiffness and bridge frequency.

Place, publisher, year, edition, pages
2017. article id 299
National Category
Infrastructure Engineering
Identifiers
URN: urn:nbn:se:kth:diva-221628OAI: oai:DiVA.org:kth-221628DiVA, id: diva2:1175395
Conference
First International Conference on Rail Transportation, Chengdu, China, July 10-12
Note

QCR 20180124

Available from: 2018-01-17 Created: 2018-01-17 Last updated: 2018-03-29Bibliographically approved
In thesis
1. Train–Track–Bridge Interaction for the Analysis of Railway Bridges and Train Running Safety
Open this publication in new window or tab >>Train–Track–Bridge Interaction for the Analysis of Railway Bridges and Train Running Safety
2018 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

In this thesis, train–track–bridge interaction (TTBI) models are used to study the dynamic response of railway bridges. A TTBI model considers the dynamics of the train in addition to that of the track–bridge system. The TTBI model enables the assessment of train running safety and passenger comfort. In the bridge design stage, a moving force model is instead typically used for the train load. The main aim of this thesis is to use results from TTBI models to assess the validity of some of the Eurocode design criteria for dynamic analysis of bridges.

A 2D rigid contact TTBI model was implemented in ABAQUS (Paper II) and in MATLAB (Paper III). In Paper V, the model was further developed to account for wheel–rail contact loss. The models were applied to study various aspects of the TTBI system, including track irregularities. The 2D analysis is motivated by the assumption that the vertical bridge vibration, which is of main interest, is primarily dependent on the vertical vehicle response and vertical wheel–rail force.

The reduction in bridge response from train–bridge interaction was studied in Papers I–II with additional results in Part A of the thesis. Eurocode EN 1991-2 accounts for this reduction by an additional damping Δζ. The results show that Δζ is non-conservative for many train–bridge systems since the effect of train–bridge interaction varies with various train–bridge relations. Hence, the use of Δζ is not appropriate in the bridge design stage.

Eurocode EN 1990-A2 specifies a deck acceleration criterion for the running safety at bridges. The limit for non-ballasted bridges (5 m/s2) is related to the assumed loss of contact between the wheel and the rail at the gravitational acceleration 1 g. This assumption is studied in Paper V based on running safety indices from the wheel–rail force for bridges at the design limit for acceleration and deflection. The conclusion is that the EN 1990-A2 deck acceleration limit for non-ballasted bridges is overly conservative and that there is a potential in improving the design criterion.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2018. p. 59
Series
TRITA-ABE-DLT ; 186
Keywords
dynamics, railway bridge, bridge deck acceleration, train–bridge interaction, vehicle model, wheel–rail force, running safety
National Category
Infrastructure Engineering
Research subject
Civil and Architectural Engineering
Identifiers
urn:nbn:se:kth:diva-225117 (URN)978-91-7729-714-7 (ISBN)
Public defence
2018-05-04, Kollegiesalen, Brinellvägen 8, Stockholm, 13:00 (English)
Opponent
Supervisors
Note

QC 20180403

Available from: 2018-04-03 Created: 2018-03-29 Last updated: 2018-04-03Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Conference webpage

Authority records BETA

Zangeneh, AbbasAndersson, Andreas

Search in DiVA

By author/editor
Arvidsson, ThereseZangeneh, AbbasCantero, DanielAndersson, Andreas
By organisation
Structural Engineering and Bridges
Infrastructure Engineering

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 29 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf