Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Imaging the detergency of single cotton fibers with confocal microscopy: the effect of surfactants and lipases
KTH, School of Engineering Sciences (SCI), Applied Physics, Cell Physics.
Novozymes A/S, Bagsvaerd.
YKI, Institute for Surface Chemistry, Stockholm.
KTH, School of Engineering Sciences (SCI), Applied Physics, Cell Physics.ORCID iD: 0000-0003-0578-4003
2007 (English)In: Journal of Surfactants and Detergents (JSD), ISSN 1097-3958, E-ISSN 1558-9293, Vol. 10, no 4, 211-218 p.Article in journal (Refereed) Published
Abstract [en]

Detergency mechanisms of lipids from single cotton fibers were visualized by means of confocal laser scanning microscopy (CLSM). Fibers were soiled with different types of lipids: olive oil, lard and tri-C-10, and subsequently stained with the fluorescent probe Nile Red. A surfactant composition of 300 M C12E6/LAS (1:2 mol%) was used to mimic the surfactants used in a common washing solution. It was evident from the captured image series that the different kinds of soiling were removed by different mechanisms by the surfactants, depending on the fluidity of the lipid. Roll-up was the main mechanism when removing olive oil, whereas emulsification (necking) and/or solubilization were observed in the removal of lard and tri-C-10. Only 20-25% of the olive oil remained after treatment with surfactants, which was much less compared to the solid fats where roughly 50% remained at end of treatment. The effect of adding lipases to the detergent formulation was clearly seen, both by an apparently higher rate of removal of olive oil but also using double injection when removing lard. A first injection of only surfactants removed a certain part of the lard as emulsion droplets stuck onto the fiber. A second injection of both lipases and surfactants was able to remove some of the preformed emulsion particles and reduce the overall remaining lard content on the cotton fiber.

Place, publisher, year, edition, pages
2007. Vol. 10, no 4, 211-218 p.
Keyword [en]
Confocal microscopy; Detergency; Emulsification; LAS; Lipase; Roll-up; Solubilization; Triglycerides; Confocal microscopy; Cotton; Emulsification; Lipids; Surface active agents; Cotton fiber; Natural fibers; Cotton; Emulsification; Lipids; Natural Fibers; Surfactants
National Category
Physical Sciences
Identifiers
URN: urn:nbn:se:kth:diva-6926DOI: 10.1007/s11743-007-1033-7ISI: 000252109400005Scopus ID: 2-s2.0-36749092694OAI: oai:DiVA.org:kth-6926DiVA: diva2:11777
Note
QC 20100818. Uppdaterad från Submitted till Published 20100818.Available from: 2007-03-27 Created: 2007-03-27 Last updated: 2017-12-14Bibliographically approved
In thesis
1. Dynamics of Enzymes at Interfaces: Lipase adsorption and mobility on solid surfaces
Open this publication in new window or tab >>Dynamics of Enzymes at Interfaces: Lipase adsorption and mobility on solid surfaces
2007 (English)Doctoral thesis, comprehensive summary (Other scientific)
Abstract [en]

This thesis aimed to give more insight in the dynamics of enzymes at interfaces. The adsorption and mobility of adsorbed proteins can e.g. give a better understanding of structure-function properties of interfacially active enzymes. Studied enzyme was the lipase from Thermomyces lanuginosus (TLL).

Adsorption of TLL to surfaces of different hydrophobicity was studied by Dual Polarization Interferometry (DPI), Surface Plasmon Resonance (SPR) and ellipsometry. It was found that TLL had highest affinity and adsorbed to largest adsorbed amount on a hydrophobic, C18 terminated surface. Moreover, activity studies of adsorbed TLL suggested that a larger fraction of the lipases were orientated with the active site facing the surface on hydrophobic surfaces.

Mobility of adsorbed enzymes was studied by means of Fluorescence Recovery After Photobleaching (FRAP) with Confocal Laser Scanning Microscopy (CLSM). CLSM was also used as a tool to image the role of TLL in the detergency of lipids from single cotton fibers. The TLL surface mobility was measured on model surfaces of different hydrophobicity. The rate of TLL surface diffusion was strongly dependent on the surface density of lipase, which was explained by sterical hindrance and intermolecular repulsion. The diffusion was both lowest and decreased as a function of time after adsorption on the most hydrophobic surface. This was thought to be due to a larger fraction of adsorbed TLL oriented with the active site towards the hydrophobic surface and that this fraction increased as a function of time.

The presence of surfactants affected the TLL mobility on hydrophobic surfaces. The diffusion increased more than tenfold when TLL was coadsorbed with C12E6/LAS above the critical micellar concentration (cmc) of the surfactant. This was thought to be due to a surfactant induced desorption-rebinding mechanism of TLL. Total Internal Reflection Fluorescence Correlation Spectroscopy (TIR-FCS) supported this theory and was implemented as a technique to quantify kinetic processes of protein-surfactant interactions at surfaces.

The surface mobility of TLL was higher on a trimyristin substrate surface compared to the model hydrophobic surface. Single particle tracing of lipases could be performed by conjugation of TLL to Quantum Dots (QDs). The microscopic behavior of QD-lipases on trimyristin suggested that the enzyme operated in two different modes on the surface, which gave the trajectories of single lipase molecules a “bead on a string” appearance.

Place, publisher, year, edition, pages
Stockholm: KTH, 2007. 57 p.
Series
Trita-FYS, ISSN 0280-316X ; 2007:20
Keyword
biophysics, surface chemistry, diffusion, enzymes, lipases, adsorption, mobility
National Category
Physical Sciences
Identifiers
urn:nbn:se:kth:diva-4319 (URN)978-91-7178-604-3 (ISBN)
Public defence
2007-04-23, FB53, AlbaNova, Roslagstullsbacken 21, Stockholm, 10:00
Opponent
Supervisors
Note
QC 20100818Available from: 2007-03-27 Created: 2007-03-27 Last updated: 2010-08-18Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopusSpringerLink

Authority records BETA

Brismar, Hjalmar

Search in DiVA

By author/editor
Sonesson, AndreasBrismar, Hjalmar
By organisation
Cell Physics
In the same journal
Journal of Surfactants and Detergents (JSD)
Physical Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 116 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf