Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Search for dark matter produced in association with bottom or top quarks in root s=13 TeV pp collisions with the ATLAS detector
KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.ORCID iD: 0000-0001-6945-1916
KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.
Show others and affiliations
Number of Authors: 28842018 (English)In: European Physical Journal C, ISSN 1434-6044, E-ISSN 1434-6052, Vol. 78, no 1Article in journal (Refereed) Published
Abstract [en]

A search for weakly interacting massive dark matter particles produced in association with bottom or top quarks is presented. Final states containing third-generation quarks and missing transverse momentum are considered. The analysis uses 36.1 fb(-1) of proton proton collision data recorded by the ATLAS experiment at root s = 13 TeV in 2015 and 2016. No significant excess of events above the estimated backgrounds is observed. The results are interpreted in the framework of simplified models of spin-0 dark-matter mediators. For colour-neutral spin-0 mediators produced in association with top quarks and decaying into a pair of dark matter particles, mediator masses below 50 GeV are excluded assuming a dark-matter candidate mass of 1 GeV and unitary couplings. For scalar and pseudoscalar mediators produced in association with bottom quarks, the search sets limits on the production cross-section of 300 times the predicted rate for mediators with masses between 10 and 50 GeV and assuming a dark-matter mass of 1 GeV and unitary coupling. Constraints on colour-charged scalar simplified models are also presented. Assuming a dark-matter particle mass of 35 GeV, mediator particles with mass below 1.1 TeV are excluded for couplings yielding a dark-matter relic density consistent with measurements.

Place, publisher, year, edition, pages
Springer, 2018. Vol. 78, no 1
National Category
Physical Sciences
Identifiers
URN: urn:nbn:se:kth:diva-222035DOI: 10.1140/epjc/s10052-017-5486-1ISI: 000422660200005Scopus ID: 2-s2.0-85040740833OAI: oai:DiVA.org:kth-222035DiVA, id: diva2:1178900
Note

QC 20180131

Available from: 2018-01-31 Created: 2018-01-31 Last updated: 2018-02-02Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records BETA

Kastanas, Konstatinos A.Lund-Jensen, BengtOhm, ChristianRipellino, GiuliaSidebo, P. EdvinStrandberg, Jonas

Search in DiVA

By author/editor
Kastanas, Konstatinos A.Lund-Jensen, BengtOhm, ChristianRipellino, GiuliaSidebo, P. EdvinStrandberg, Jonas
By organisation
Particle and Astroparticle Physics
In the same journal
European Physical Journal C
Physical Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 61 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf