Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Spontaneous flux concentrations from the negative effective magnetic pressure instability beneath a radiative stellar surface
KTH, Centres, Nordic Institute for Theoretical Physics NORDITA.ORCID iD: 0000-0002-7304-021X
2018 (English)In: Astronomy and Astrophysics, ISSN 0004-6361, E-ISSN 1432-0746, Vol. 609, article id A99Article in journal (Refereed) Published
Abstract [en]

Context. The formation of sunspots requires the concentration of magnetic flux near the surface. The negative effective magnetic pressure instability (NEMPI) might be a possible mechanism for accomplishing this, but it has mainly been studied in simple systems using an isothermal equation of state without a natural free surface. Aims. We study NEMPI in a stratified Cartesian mean-field model where turbulence effects are parameterized. We use an ideal equation of state and include radiation transport, which establishes selfconsistently a free surface. Methods. We use a Kramers-type opacity with adjustable exponents chosen such that the deeper layers are approximately isentropic. No convection is therefore possible in this model, allowing us to study NEMPI with radiation in isolation. We restrict ourselves to two-dimensional models. We use artificially enhanced mean-field coefficients to allow NEMPI to develop, thereby making it possible to study the reason why it is much harder to excite in the presence of radiation. Results. NEMPI yields moderately strong magnetic flux concentrations a certain distance beneath the surface where the optical depth is unity. The instability is oscillatory and in the form of upward traveling waves. This seems to be a new effect that has not been found in earlier models without radiative transport. The horizontal wavelength is about ten times smaller than what has previously been found in more idealized isothermal models. Conclusions. In our models, NEMPI saturates at field strengths too low to explain sunspots. Furthermore, the structures appear too narrow and too far beneath the surface to cause significant brightness variations at the radiative surface. We speculate that the failure to reproduce effects resembling sunspots may be related to the neglect of convection.

Place, publisher, year, edition, pages
EDP Sciences, 2018. Vol. 609, article id A99
Keyword [en]
Hydrodynamics, Radiative transfer, Sun: atmosphere, Sunspots
National Category
Astronomy, Astrophysics and Cosmology
Identifiers
URN: urn:nbn:se:kth:diva-222504DOI: 10.1051/0004-6361/201730421ISI: 000423437600004Scopus ID: 2-s2.0-85041195183OAI: oai:DiVA.org:kth-222504DiVA, id: diva2:1182024
Note

QC 20180212

Available from: 2018-02-12 Created: 2018-02-12 Last updated: 2018-02-12Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records BETA

Brandenburg, Axel

Search in DiVA

By author/editor
Brandenburg, Axel
By organisation
Nordic Institute for Theoretical Physics NORDITA
In the same journal
Astronomy and Astrophysics
Astronomy, Astrophysics and Cosmology

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 2 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf