Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Analyzing the lifecycle energy and greenhouse gas (GHG) balances of palm oil biodiesel production in Indonesia
KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Energy and Climate Studies, ECS.
KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Energy and Climate Studies, ECS.
KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Energy and Climate Studies, ECS.
KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Energy and Climate Studies, ECS.ORCID iD: 0000-0001-7123-1824
2016 (English)In: 15th World Renewable Energy Congress, 2016Conference paper, Published paper (Refereed)
Abstract [en]

This study performs sustainability analysis of palm oil biodiesel production systems in Indonesia. Life Cycle Assessment (LCA) approach is used to evaluate the net GHG emissions (climate change impact) and energy inputs (resource consumption) in the entire production chain. The main aim of the study is to investigate the energy and environmental aspects of the palm oil biodiesel production chain. The worthiness of biodiesel production and use in terms of GHG emissions is compared with conventional diesel. The system boundary includes the mass and energy flows during the cultivation, harvesting, palm oil milling, and bio-refining phases. Energy inputs and emissions due to agricultural activities such land preparation, seedling, application of fertilizers/chemicals, and planting are considered in the analysis. The scope of the study also includes collection and transport of palm oil feedstock, fresh fruit brunch (FFB) and crude palm oil (CPO) for biodiesel production. Assessment of climate change impact is also performed when it comes to improvements of agricultural practices and alternation of soil carbon stocks due to land use change.

The study examines the utilization of co-products (e.g. kernel oil, glycerol), palm oil residues, and waste water (effluents) generated during the palm biodiesel production system. Palm kernel and glycerol are important commodities/products which have high market values. The use of biomass residues (e.g. fibres and shells) for energy production in efficient cogeneration, and different waste management options for the treatment of palm oil milling effluent (POME) are also explored. Sensitivity analysis is performed for the most influencing parameters such as palm oil yield, the rate of fertilizer application, plant conversion efficiencies while determining the environmental and energy gains. Since the palm oil biodiesel production systems involve multiple co-products and services, it is of utmost importance to use appropriate allocation methods in order to divide environmental burdens and resource inputs. We use allocation by energy content and economic values, and system expansion considering the substitution of fossil based power by bioelectricity derived from biomass cogeneration plants and/or electricity generation using biogas produced from POME treatment. The study finds that bioelectricity generation from surplus biomass residues and biogas from POME, and their use for fossil fuel substitution can significantly help improve energy and environmental gains. The study also compares important results with other relevant international LCA studies and discusses issues related to land use on climate change impact. Recommendations are made for the appropriate utilization of palm oil, its co-products, and residues for the both energy and climate benefits.  

Place, publisher, year, edition, pages
2016.
Keyword [en]
Life Cycle Assessment, Palm Oil, Biodiesel, Indonesia
National Category
Energy Engineering
Research subject
Energy Technology
Identifiers
URN: urn:nbn:se:kth:diva-223393OAI: oai:DiVA.org:kth-223393DiVA, id: diva2:1184100
Conference
15th World Renewable Energy Congress (WREC) 2016. 19-23 September, Jakarta, Indonesia
Note

QC 20180327

Available from: 2018-02-20 Created: 2018-02-20 Last updated: 2018-05-24Bibliographically approved

Open Access in DiVA

No full text in DiVA

Authority records BETA

Khatiwada, DilipScheer, JannikSilveira, Semida

Search in DiVA

By author/editor
Khatiwada, DilipScheer, JannikSilveira, Semida
By organisation
Energy and Climate Studies, ECS
Energy Engineering

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 54 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf