Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Recyclable and superelastic aerogels based on carbon nanotubes and carboxymethyl cellulose
KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center. (Biocomposites)ORCID iD: 0000-0003-0298-8553
KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.ORCID iD: 0000-0001-5818-2378
2018 (English)In: Composites Science And Technology, ISSN 0266-3538, E-ISSN 1879-1050, Vol. 159, p. 1-10Article in journal (Refereed) Published
Abstract [en]

Deformation mechanisms are largely unknown for superelastic carbon nanotube (CNT) aerogels, and this hampers materials design efforts. The CNT network in the cell walls is typically crosslinked or connected by a thermoset polymer phase. In order to create a recyclable superelastic aerogel, unmodified single or multi-walled CNTs were dispersed in water by adding to aqueous carboxymethyl cellulose (CMC) solution. Directional freeze-drying was used to form honeycombs with cell walls of random-in-the-plane CNTs in CMC matrix. Cell wall morphology and porosity were studied and related to CNT type and content, as well as elastic or plastic buckling of the cell walls under deformation. CMC acts as a physical crosslinker for the CNTs in a porous cell wall. Aerogel structure and properties were characterized before and after recycling. The conductivity of the composite aerogel with a density of 10 kg/m3, 99% porosity and 50 wt % single-walled CNT exceeds 0.5 S/cm. The potential of these superelastic and conductive aerogels for applications such as mechanoresponsive materials was examined in cyclic conductivity tests at different strains. This opens a new route for recyclable superelastic CNT composite aerogels, avoiding material loss, chemical treatment or addition of other components.

Place, publisher, year, edition, pages
Elsevier, 2018. Vol. 159, p. 1-10
Keywords [en]
Polymers; Nanocomposites; CNT networks; Conductivity; Recycle
National Category
Composite Science and Engineering Textile, Rubber and Polymeric Materials Nano Technology
Research subject
Materials Science and Engineering
Identifiers
URN: urn:nbn:se:kth:diva-223432DOI: 10.1016/j.compscitech.2018.01.002ISI: 000436214100001Scopus ID: 2-s2.0-85042350204OAI: oai:DiVA.org:kth-223432DiVA, id: diva2:1184388
Note

QC 20180308

Available from: 2018-02-21 Created: 2018-02-21 Last updated: 2018-07-17Bibliographically approved
In thesis
1. Cellulose–Assisted Dispersion of Carbon Nanotubes: From Colloids to Composites
Open this publication in new window or tab >>Cellulose–Assisted Dispersion of Carbon Nanotubes: From Colloids to Composites
2018 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

It is a challenge to disperse nanoparticles to obtain a nanostructured composite. This thesis aims at providing a new route to fabricate carbon nanotube (CNT) composites and suggests mechanisms for nanocellulose–CNT interactions. This route is based on unmodified CNT dispersed in water with the help of nanocellulose. Chemical functionalization of the CNTs and the addition of surfactants are avoided. Thus, the mechanical and electrical properties of such nanotube composites can be improved.

Cellulose derivatives can disperse and stabilize carbon nanotubes in water. Nanocellulose particles, such as cellulose nanofibrils (CNF), are a new form of cellulose derivatives that are able to disperse and stabilize untreated carbon nanotubes in water. The utilization of the hybrid CNF–CNT dispersions are shown to lead to strong nanostructured composites with high nanotube content and conductivity. The mechanism behind the dispersive action of nanocellulose for nanotubes is explored and studied in detail. The dispersive ability of the nanocellulose leads to improved properties of CNF–CNT composites.

Apart from studies of structure and properties of composite fibers and films, two different functional materials are studied in detail. One is to form conductive patterns on cellulose nanopaper for the stable function of printed electronics in various environmental conditions and during handling. The second is to use a water-soluble cellulosic polymer–nanotube dispersion to fabricate superelastic aerogels without any chemical crosslinking or the addition of another component. This makes the aerogels easily recyclable (redispersible in water) and opens a new route for recyclable superelastic CNT composite aerogels.

Abstract [sv]

Det är en utmaning att dispergera nanopartiklar för nanostrukturerade kompositer. Avhandlingen beskriver en ny väg för att framställa kompositer från kolnanorör (CNT) och föreslår mekanismer för växelverkan mellan CNT och CNF. Den nya vägen baseras sig på dispergering av CNT i vatten med hjälp av CNF. CNT behöver inte modifieras kemiskt eller med ytaktiva ämnen. Mekaniska och elektriska egenskaper hos materialen kan därför förbättras.

Cellulsosaderivat kan dispergera och stabilisera CNT i vatten. Nanocellulosa är en ny typ av derivat, i form av fibriller eller nanokristaller, som kan dispergera och stabilisera icke modifierade CNT i vatten. Dispersioner av CNF-CNT används för att framställa starka nanokompositer med hög CNT-halt och hög elektrisk ledningsförmåga. Dispergerings-mekanismen studeras och förklaras från experimentella data. Den dispergerande förmågan hos CNF leder till förbättrade egenskaper hos CNF-CNT-kompositer.

Struktur-egenskaps relationer för fibrer och filmer rapporteras. Två typer av funktionella material studeras i detalj. Ett av materialen består av ledande mönster av CNF-CNT på substrat av nanocellulosa. Det andra exemplet är superelastiska aerogeler utan kemisk tvärbindning. Aerogelerna kan återvinnas och öppnar möjligheter för superelastiska aerogeler.

Place, publisher, year, edition, pages
KTH Royal Institute of Technology, 2018. p. 55
Series
TRITA-CBH-FOU ; 2018:2
Keywords
Nanocelluloses, Carbon nanotubes, Composites, Colloids
National Category
Composite Science and Engineering Paper, Pulp and Fiber Technology Nano Technology
Research subject
Fibre and Polymer Science
Identifiers
urn:nbn:se:kth:diva-223453 (URN)978-91-7729-685-0 (ISBN)
Public defence
2018-03-14, F3, Lindstedtsvägen 26, Stockholm, 10:00 (English)
Opponent
Supervisors
Note

QC 20180221

Available from: 2018-02-21 Created: 2018-02-21 Last updated: 2018-03-09Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records BETA

Hajian, AlirezaFu, QiliangBerglund, Lars

Search in DiVA

By author/editor
Hajian, AlirezaFu, QiliangBerglund, Lars
By organisation
Fibre- and Polymer TechnologyWallenberg Wood Science Center
In the same journal
Composites Science And Technology
Composite Science and EngineeringTextile, Rubber and Polymeric MaterialsNano Technology

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 256 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf