Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
GENERALIZING SERRE'S SPLITTING THEOREM AND BASS'S CANCELLATION THEOREM VIA FREE-BASIC ELEMENTS
KTH, School of Engineering Sciences (SCI), Mathematics (Dept.).ORCID iD: 0000-0003-3094-956X
2018 (English)In: Proceedings of the American Mathematical Society, ISSN 0002-9939, E-ISSN 1088-6826, Vol. 146, no 4, p. 1417-1430Article in journal (Refereed) Published
Abstract [en]

We give new proofs of two results of Stafford, which generalize two famous Theorems of Serre and Bass regarding projective modules. Our techniques are inspired by the theory of basic elements. Using these methods we further generalize Serre's Splitting Theorem by imposing a condition to the splitting maps, which has an application to the case of Cartier algebras.

Place, publisher, year, edition, pages
AMER MATHEMATICAL SOC , 2018. Vol. 146, no 4, p. 1417-1430
Keywords [en]
Free-basic elements, local and global free summands, projective modules
National Category
Algebra and Logic
Identifiers
URN: urn:nbn:se:kth:diva-222399DOI: 10.1090/proc/13754ISI: 000423537500005Scopus ID: 2-s2.0-85041519326OAI: oai:DiVA.org:kth-222399DiVA, id: diva2:1185081
Note

QC 20180223

Available from: 2018-02-23 Created: 2018-02-23 Last updated: 2018-02-23Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Search in DiVA

By author/editor
De Stefani, Alessandro
By organisation
Mathematics (Dept.)
In the same journal
Proceedings of the American Mathematical Society
Algebra and Logic

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 12 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf