Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Circular duct hybrid bar silencer insertion loss measurement with comparison to prediction
KTH, School of Engineering Sciences (SCI), Aeronautical and Vehicle Engineering.
2017 (English)In: INTER-NOISE 2017 - 46th International Congress and Exposition on Noise Control Engineering: Taming Noise and Moving Quiet, Institute of Noise Control Engineering , 2017Conference paper, Published paper (Refereed)
Abstract [en]

Noise within the exhaust of gas turbine systems is commonly reduced using dissipative silencers. These types of silencers provide a high performance across the mid-frequency range but do little to reduce noise at the low frequencies. Reactive solutions are more effective at targeting low frequency noise, however these silencers must be designed without compromising restrictive pressure drop limitations while remaining operational in large diameter ducts and at high temperatures. A hybrid dissipative-reactive silencer is investigated here allowing for both the broadband and tonal low frequency noise to be reduced. The dissipative elements are regular, perforated baffles containing absorbent material and the reactive elements make use of quarter wave resonators. The hybrid design is applied to a circular duct bar silencer cross-section where the addition of the reactive component will have minimal effect on pressure drop. Insertion loss measurements are presented for a dissipative and hybrid silencer and it is found that the reactive elements increase insertion loss at the targeted frequency and at regular frequencies above this. Such increases in performance are found to persist outside of the duct's plane wave region. A two dimensional finite element model is also used to predict silencer transmission loss and this shows good agreement when compared to experimental data. This model may then be used to develop new bespoke hybrid silencer designs for demanding noise control applications.

Place, publisher, year, edition, pages
Institute of Noise Control Engineering , 2017.
Keyword [en]
Dissipative, Reactive muffler, Splitter silencer
National Category
Fluid Mechanics and Acoustics
Identifiers
URN: urn:nbn:se:kth:diva-224412Scopus ID: 2-s2.0-85042113874OAI: oai:DiVA.org:kth-224412DiVA, id: diva2:1191449
Conference
46th International Congress and Exposition on Noise Control Engineering: Taming Noise and Moving Quiet, INTER-NOISE 2017, Hong Kong Convention and Exhibition Centre (HKCEC)Hong Kong, China, 27 August 2017 through 30 August 2017
Note

QC 20180319

Available from: 2018-03-19 Created: 2018-03-19 Last updated: 2018-03-19Bibliographically approved

Open Access in DiVA

No full text in DiVA

Scopus

Search in DiVA

By author/editor
Åbom, Mats
By organisation
Aeronautical and Vehicle Engineering
Fluid Mechanics and Acoustics

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 1 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf