Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Construction of Bioactive and Reinforced Bioresorbable Nanocomposites by Reduced Nano-Graphene Oxide Carbon Dots
KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Polymer Technology.
KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Polymer Technology.ORCID iD: 0000-0002-7790-8987
2018 (English)In: Biomacromolecules, ISSN 1525-7797, E-ISSN 1526-4602, Vol. 19, no 3, p. 1074-1081Article in journal (Refereed) Published
Abstract [en]

Bioactive and reinforced poly(ϵ-caprolactone) (PCL) films were constructed by incorporation of cellulose derived reduced nanographene oxide (r-nGO) carbon nanodots. Two different microwave-assisted reduction routes in superheated water were utilized to obtain r-nGO and r-nGO-CA. For the latter, a green reducing agent caffeic acid (CA), was incorporated in the reduction process. The materials were extruded and compression molded to obtain proper dispersion of the carbon nanodots in the polymer matrix. FTIR results revealed favorable interactions between r-nGO-CA and PCL that improved the dispersion of r-nGO-CA. r-nGO, and r-nGO-CA endorsed PCL with several advantageous functionalities including improved storage modulus and creep resistance. The considerable increase in storage modulus demonstrated that the carbon nanodots had a significant reinforcing effect on PCL. The PCL films with r-nGO-CA were also evaluated for their osteobioactivity and cytocompatibility. Bioactivity was demonstrated by formation of hydroxyapatite (HA) minerals on the surface of r-nGO-CA loaded nanocomposites. At the same time, the good cytocompatibility of PCL was retained as illustrated by the good cell viability to MG63 osteoblast-like cells giving promise for bone tissue engineering applications.

Place, publisher, year, edition, pages
American Chemical Society (ACS), 2018. Vol. 19, no 3, p. 1074-1081
National Category
Polymer Technologies
Identifiers
URN: urn:nbn:se:kth:diva-224583DOI: 10.1021/acs.biomac.8b00207ISI: 000427539600037PubMedID: 29438617Scopus ID: 2-s2.0-85043576320OAI: oai:DiVA.org:kth-224583DiVA, id: diva2:1191757
Funder
Swedish Research Council, 2014-4091
Note

QC 20180320

Available from: 2018-03-20 Created: 2018-03-20 Last updated: 2018-04-05Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textPubMedScopus

Search in DiVA

By author/editor
Erdal, Nejla B.Hakkarainen, Minna
By organisation
Polymer Technology
In the same journal
Biomacromolecules
Polymer Technologies

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 17 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf