Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Chitosan-Silica Hybrid Composites for Removal of Sulfonated Azo Dyes from Aqueous Solutions
KTH.
Show others and affiliations
2018 (English)In: Langmuir, ISSN 0743-7463, E-ISSN 1520-5827, Vol. 34, no 6, p. 2258-2273Article in journal (Refereed) Published
Abstract [en]

In this study,. the influence of the chitosan immobilization method on the properties of final hybrid materials was performed. Chitosan was immobilized on the surface of mesoporous (ChS2) and fumed silica (ChS3) by physical adsorption and the sol gel method (ChS1). It was found that physical immobilization of chitosan allows to obtain hybrid composites (ChS) with a homogeneous distribution of polymer on the surface, relatively wide pores, and specific surface area of about 170 m(2)/g, PHpzc = 5.7 for ChS3 and 356 m(2)/g and pH(pzc) = 6.0 for ChS2. The microporous chitosan silica material with a specific surface area of 600 m(2)/g and a more negatively charged surface (pH(pzc) = 4.2) was obtained by the sol gel reaction. The mechanisms of azo dye adsorption were studied, and the correlation with the composite structure was distinguished. The generalized Langmuir equation and its special cases, that is, Langmuir-Freundlich and Langmuir equations, were applied for the analysis of adsorption isotherm data. The adsorption study showed that physically adsorbed chitosan (ChS1 and ChS2) on a silica surface has a higher sorption capacity, for example, 0.48 mmol/g for the acid red 88 (AR88) dye (ChS2) and 0.23 mmol/g for the acid orange 8 (AO8) dye (ChS1), compared to the composite obtained by the sol-gel method [ChS1, 0.05 mmol/g for the A08 dye]. For a deeper understanding of the behavior of immobilized chitosan in the adsorption processes, various kinetic equations were applied: first-order, second-order, mixed 1,2-order (MOE), multiexponential, and fractal-like MOE as well as intraparticle and pore diffusion model equations. In the case of AO8 dye, the adsorption rates were differentiated for three composites: for ChS3, 50% of the dye was removed from the solution after merely 5 min and almost 90% after 80 min. The slowest adsorption process controlled by the diffusion rate of dye molecules into the internal space of the pore structure was found for ChS1 (225 min halftime). In the case of ChS2, the rates for various dyes change in the following order: acid orange (AO7) > orange G (OG) > acid red 1 (AR1) > AR88 > AO8 (halftimes: 10.5 < 15.7 < 23.7 < 34.9 < 42.9 min).

Place, publisher, year, edition, pages
AMER CHEMICAL SOC , 2018. Vol. 34, no 6, p. 2258-2273
National Category
Other Chemistry Topics
Identifiers
URN: urn:nbn:se:kth:diva-224029DOI: 10.1021/acs.langmuir.7b04076ISI: 000425474800005PubMedID: 29345945Scopus ID: 2-s2.0-85041958756OAI: oai:DiVA.org:kth-224029DiVA, id: diva2:1191801
Note

QC 20180320

Available from: 2018-03-20 Created: 2018-03-20 Last updated: 2018-03-20Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textPubMedScopus

Search in DiVA

By author/editor
Budnyak, Tetyana M.
By organisation
KTH
In the same journal
Langmuir
Other Chemistry Topics

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 3 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf