Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Identifying the tuning key of disproportionation redox reaction in terephthalate: A Li-based anode for sustainable organic batteries
KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering, Applied Material Physics. Uppsala University, Sweden.
2018 (English)In: Nano Energy, ISSN 2211-2855, E-ISSN 2211-3282, Vol. 47, p. 301-308Article in journal (Refereed) Published
Abstract [en]

The ever-increasing consumption of energy storage devices has pushed the scientific community to realize strategies toward organic electrodes with superior properties. This is owed to advantages such as economic viability and eco-friendliness. In this context, the family of conjugated dicarboxylates has emerged as an interesting candidate for the application as negative electrodes in advanced Li-ion batteries due to the revealed thermal stability, rate capability, high capacity and high cyclability. This work aims to rationalize the effects of small molecular modifications on the electrochemical properties of the terephthalate anode by means of first principles calculations. The crystal structure prediction of the investigated host compounds dilithium terephthalate (Li2TP) and diethyl terephthalate (Et2Li0TP) together with their crystal modification upon battery cycling enable us to calculate the potential profile of these materials. Distinct underlying mechanisms of the redox reactions were obtained where Li2TP comes with a disproportionation reaction while Et2Li0TP displays sequential redox reactions. This effect proved to be strongly correlated to the Li coordination number evolution upon the Li insertion into the host structures. Finally, the calculations of sublimation enthalpy inferred that polymerization techniques could easily be employed in Et2Li0TP as compared to Li2TP. Similar results are observed with methyl, propyl, and vinyl capped groups. That could be a strategy to enhance the properties of this compound placing it into the gallery of the new anode materials for state of art Li-batteries.

Place, publisher, year, edition, pages
Elsevier, 2018. Vol. 47, p. 301-308
Keywords [en]
Disproportionation, Li-ion organic battery, Lithium terephthalate, Redox potential
National Category
Other Chemistry Topics
Identifiers
URN: urn:nbn:se:kth:diva-224549DOI: 10.1016/j.nanoen.2018.02.038ISI: 000430057000031Scopus ID: 2-s2.0-85043510810OAI: oai:DiVA.org:kth-224549DiVA, id: diva2:1192075
Funder
Swedish Research Council, VR 2016-06014
Note

QC 20180321

Available from: 2018-03-21 Created: 2018-03-21 Last updated: 2018-05-28Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records BETA

Ahuja, Rajeev

Search in DiVA

By author/editor
Ahuja, Rajeev
By organisation
Applied Material Physics
In the same journal
Nano Energy
Other Chemistry Topics

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 56 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf