Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Heavy inertial particles in turbulent flows gain energy slowly but lose it rapidly
KTH, Centres, Nordic Institute for Theoretical Physics NORDITA. Stockholm University, Sweden.
KTH, Centres, Nordic Institute for Theoretical Physics NORDITA. Stockholm University, Sweden.ORCID iD: 0000-0001-6162-7112
2018 (English)In: Physical review. E, ISSN 2470-0045, E-ISSN 2470-0053, Vol. 97, no 3, article id 033102Article in journal (Refereed) Published
Abstract [en]

We present an extensive numerical study of the time irreversibility of the dynamics of heavy inertial particles in three-dimensional, statistically homogeneous, and isotropic turbulent flows. We show that the probability density function (PDF) of the increment, W(tau), of a particle's energy over a time scale tau is non-Gaussian, and skewed toward negative values. This implies that, on average, particles gain energy over a period of time that is longer than the duration over which they lose energy. We call this slow gain and fast loss. We find that the third moment of W(tau) scales as tau(3) for small values of tau. We show that the PDF of power-input p is negatively skewed too; we use this skewness Ir as a measure of the time irreversibility and we demonstrate that it increases sharply with the Stokes number St for small St; this increase slows down at St similar or equal to 1. Furthermore, we obtain the PDFs of t(+) and t(-), the times over which p has, respectively, positive or negative signs, i.e., the particle gains or loses energy. We obtain from these PDFs a direct and natural quantification of the slow gain and fast loss of the energy of the particles, because these PDFs possess exponential tails from which we infer the characteristic loss and gain times t(loss) and t(gain), respectively, and we obtain t(loss) < t(gain) for all the cases we have considered. Finally, we show that the fast loss of energy occurs with greater probability in the strain-dominated region than in the vortical one; in contrast, the slow gain in the energy of the particles is equally likely in vortical or strain-dominated regions of the flow.

Place, publisher, year, edition, pages
American Physical Society, 2018. Vol. 97, no 3, article id 033102
National Category
Physical Sciences
Identifiers
URN: urn:nbn:se:kth:diva-224681DOI: 10.1103/PhysRevE.97.033102ISI: 000426527300010Scopus ID: 2-s2.0-85044138699OAI: oai:DiVA.org:kth-224681DiVA, id: diva2:1192371
Funder
Swedish Research Council, 2011-542 638-2013-9243Knut and Alice Wallenberg Foundation, KAW 2014.0048
Note

QC 20180322

Available from: 2018-03-22 Created: 2018-03-22 Last updated: 2018-03-22Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records BETA

Mitra, Dhrubaditya

Search in DiVA

By author/editor
Bhatnagar, AkshayMitra, Dhrubaditya
By organisation
Nordic Institute for Theoretical Physics NORDITA
In the same journal
Physical review. E
Physical Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 2 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf