Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Nanoparticulate Dielectric Overlayer for Enhanced Electric Fields in a Capacitive Deionization Device
KTH, School of Engineering Sciences (SCI), Applied Physics, Materials and Nanophysics.
KTH, School of Engineering Sciences (SCI), Applied Physics.
KTH, School of Engineering Sciences (SCI), Applied Physics.ORCID iD: 0000-0002-0074-3504
2018 (English)In: ACS Applied Materials and Interfaces, ISSN 1944-8244, E-ISSN 1944-8252, Vol. 10, no 6, p. 5941-5948Article in journal (Refereed) Published
Abstract [en]

The magnitude and distribution of the electric field between two conducting electrodes of a capacitive deionization (CDI) device plays an important role in governing the desalting capacity. A dielectric coating on these electrodes can polarize under an applied potential to modulate the net electric field and hence the salt adsorption capacity of the device. Using finite element models, we show the extent and nature of electric field modulation, associated with changes in the size, thickness, and permittivity of commonly used nanostructured dielectric coatings such as zinc oxide (ZnO) and titanium dioxide (TiO2). Experimental data pertaining to the simulation are obtained by coating activated carbon cloth (ACC) with nanoparticles of ZnO and TiO2 and using them as electrodes in a CDI device. The dielectric-coated electrodes displayed faster desalting kinetics of 1.7 and 1.55 mg g(-1) min(-1) and higher unsaturated specific salt adsorption capacities of 5.72 and 5.3 mg g(-1) for ZnO and TiO2, respectively. In contrast, uncoated ACC had a salt adsorption rate and capacity of 1.05 mg g(-1) min(-1) and 3.95 mg g(-1), respectively. The desalting data is analyzed with respect to the electrical parameters of the electrodes extracted from cyclic voltammetry and impedance measurements. Additionally, the obtained results are correlated with the simulation data to ascertain the governing principles for the changes observed and advances that can be achieved through dielectric-based electrode modifications for enhancing the CDI device performance.

Place, publisher, year, edition, pages
AMER CHEMICAL SOC , 2018. Vol. 10, no 6, p. 5941-5948
Keywords [en]
dielectric polarization, capacitive deionization, electric field, zinc oxide, titanium dioxide
National Category
Chemical Sciences
Identifiers
URN: urn:nbn:se:kth:diva-224027DOI: 10.1021/acsami.7b16540ISI: 000425572700090PubMedID: 29369615Scopus ID: 2-s2.0-85042051819OAI: oai:DiVA.org:kth-224027DiVA, id: diva2:1192707
Note

QC 20180323

Available from: 2018-03-23 Created: 2018-03-23 Last updated: 2018-03-23Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textPubMedScopus

Authority records BETA

Laxman, KarthikDutta, Joydeep

Search in DiVA

By author/editor
Laxman, KarthikKimoto, DaikiDutta, Joydeep
By organisation
Materials and NanophysicsApplied Physics
In the same journal
ACS Applied Materials and Interfaces
Chemical Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 58 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf