Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Turbulence transition in the asymptotic suction boundary layer
KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW.
Show others and affiliations
2013 (English)In: International Symposium on Turbulence and Shear Flow Phenomena, TSFP 2013, TSFP-8 , 2013Conference paper, Published paper (Refereed)
Abstract [en]

We study the transition to turbulence in the asymptotic suction boundary layer (ASBL) by direct numerical simulation. Tracking the motion of trajectories intermediate between laminar and turbulent states we can identify the invariant object inside the laminar-Turbulent boundary, the edge state. In small domains, the flow behaves like a travelling wave over short time intervals. On longer times one notes that the energy shows strong bursts at regular time intervals. During the bursts the streak structure is lost, but it reforms, translated in the spanwise direction by half the domain size. Varying the suction velocity allows to embed the flow into a family of flows that interpolate between plane Couette flow and the ASBL. Near the plane Couette limit, the edge state is a travelling wave. Increasing the suction, the travelling wave and a symmetry-related copy of it undergo a saddle-node infinite-period (SNIPER) bifurcation that leads to bursting and discrete-symmetry shifts. In wider domains, the structures localize in the spanwise direction, and the flow in the active region is similar to the one in small domains. There are still periodic bursts at which the flow structures are shifted, but the shift-distance is no longer connected to a discrete symmetry of the flow geometry. Two different states are found by edge tracking techniques, one where structures are shifted to the same side at every burst and one where they are alternatingly shifted to the left and to the right.

Place, publisher, year, edition, pages
TSFP-8 , 2013.
Keywords [en]
Atmospheric thermodynamics, Boundary layers, Turbulence, Turbulent flow, Wave transmission, Discrete symmetry, Invariant objects, Plane Couette flow, Short time intervals, Suction velocity, Transition to turbulence, Turbulence transition, Turbulent boundary, Shear flow
National Category
Fluid Mechanics and Acoustics
Identifiers
URN: urn:nbn:se:kth:diva-222978Scopus ID: 2-s2.0-85034104016ISBN: 9780000000002 OAI: oai:DiVA.org:kth-222978DiVA, id: diva2:1193254
Conference
8th International Symposium on Turbulence and Shear Flow Phenomena, TSFP 2013, 28 August 2013 through 30 August 2013
Note

QC 20180326

Available from: 2018-03-26 Created: 2018-03-26 Last updated: 2018-05-24Bibliographically approved

Open Access in DiVA

No full text in DiVA

Scopus

Authority records BETA

Schlatter, PhilippHenningson, Dan S.

Search in DiVA

By author/editor
Khapko, TarasSchlatter, PhilippHenningson, Dan S.
By organisation
Linné Flow Center, FLOWStability, Transition and ControlSeRC - Swedish e-Science Research Centre
Fluid Mechanics and Acoustics

Search outside of DiVA

GoogleGoogle Scholar

isbn
urn-nbn

Altmetric score

isbn
urn-nbn
Total: 2 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf