Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
A Coupled Micromechanical Model of Frost Damage in Asphalt
KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Structural Engineering and Bridges.ORCID iD: 0000-0001-8718-1411
KTH, School of Architecture and the Built Environment (ABE), Architecture, Architectural Technologies. KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Structural Engineering and Bridges.ORCID iD: 0000-0001-7333-1140
KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Structural Engineering and Bridges.ORCID iD: 0000-0003-3968-6778
2018 (English)In: Transportation Research Board 97th Annual Meeting, Washington DC, January 7-11, 2018, 2018Conference paper, Published paper (Refereed)
Abstract [en]

Frost damage in asphalt pavements is an important factor influencing the performance of the pavement. This type of damage occurs during freeze-thaw cycles when ice forms in the air voids, causing microstructural changes and degradation of material properties, thus affecting the performance of the pavement. It is therefore necessary to understand the process of frost damage in order to prevent it. However, experimental testing is often expensive and time consuming and only a limited number of numerical models dealing with the topic exist. In this work, a numerical micromechanical model has been developed that couple the diffusion of moisture in the asphalt to the damage occurring in a freezing and thawing environment. In this paper, the model is presented and applied on an asphalt microstructure obtained by x-ray scanning of a real asphalt sample. The effect of including frost damage is shown by comparing the behavior of a damaged microstructure to the behavior of an undamaged microstructure. It is revealed that the strength of the damaged microstructure reduces to about 50% of the strength of the undamaged microstructure. Furthermore, the coupling of the moisture content in the air voids to the expansion of the air voids is proved to be important since the assumption that all air voids are fully saturated overestimates the decrease in strength. The next step in this research will be to validate the model with laboratory data. A validated model can assist in improving the predictions of frost damage and help in developing better laboratory tests.

Place, publisher, year, edition, pages
2018.
National Category
Infrastructure Engineering
Research subject
Civil and Architectural Engineering
Identifiers
URN: urn:nbn:se:kth:diva-224877OAI: oai:DiVA.org:kth-224877DiVA, id: diva2:1193537
Conference
Transportation Research Board 97th Annual Meeting
Note

QC 20180404

Available from: 2018-03-27 Created: 2018-03-27 Last updated: 2018-04-04Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Conference webpage

Authority records BETA

Lövqvist, LisaBalieu, RomainKringos, Nicole

Search in DiVA

By author/editor
Lövqvist, LisaBalieu, RomainKringos, Nicole
By organisation
Structural Engineering and BridgesArchitectural Technologies
Infrastructure Engineering

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 30 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf