Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Ammonia contamination of a proton exchange membrane fuel cell
KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemical Engineering, Applied Electrochemistry.
KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemical Engineering, Applied Electrochemistry.ORCID iD: 0000-0002-1626-1067
KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemical Engineering, Applied Electrochemistry.ORCID iD: 0000-0001-9203-9313
KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemical Engineering, Applied Electrochemistry.
2018 (English)In: Journal of the Electrochemical Society, ISSN 0013-4651, E-ISSN 1945-7111, Vol. 165, no 3, p. F189-F197Article in journal (Refereed) Published
Abstract [en]

Reformate hydrogen from biogas is an attractive fuel alternative for energy conversion in PEM fuel cells. However, in the reformate traces of ammonia may be found, e.g. if the biogas is produced from agricultural resources. In this investigation the effect of ammonia in the fuel gas, on each part of the fuel cell, is studied by cyclic voltammetry, electrochemical impedance spectroscopy (EIS), symmetrical hydrogen cell (H2|H2)- and real fuel cell operation. A considerable degradation in performance is observed by introducing 200 ppm ammonia. The results show that ammonia not only affects the polymer electrolyte membrane but also the oxygen reduction reaction (ORR) and catalyst ionomer in both electrodes, whereas the hydrogen oxidation reaction (HOR) is the worst affected. In the short-term, the performance is reversible if running the cell on neat hydrogen after ammonia exposure, but this does not apply for long-term exposure. A mitigation method with air bleed is tested but gives no improvement of the performance.

Place, publisher, year, edition, pages
Electrochemical Society, 2018. Vol. 165, no 3, p. F189-F197
National Category
Other Chemical Engineering
Identifiers
URN: urn:nbn:se:kth:diva-225020DOI: 10.1149/2.0761803jesScopus ID: 2-s2.0-85043771326OAI: oai:DiVA.org:kth-225020DiVA, id: diva2:1193902
Funder
StandUp
Note

QC 20180328

Available from: 2018-03-28 Created: 2018-03-28 Last updated: 2018-03-28Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records BETA

Oyarce, AlejandroLindbergh, Göran

Search in DiVA

By author/editor
Gomez, Yasna AcevedoOyarce, AlejandroLindbergh, GöranLagergren, Carina
By organisation
Applied Electrochemistry
In the same journal
Journal of the Electrochemical Society
Other Chemical Engineering

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 14 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf