Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Electrically Driven Microengineered Bioinspired Soft Robots
Show others and affiliations
2018 (English)In: Advanced Materials, ISSN 0935-9648, E-ISSN 1521-4095, Vol. 30, no 10, article id 1704189Article in journal (Refereed) Published
Abstract [en]

To create life-like movements, living muscle actuator technologies have borrowed inspiration from biomimetic concepts in developing bioinspired robots. Here, the development of a bioinspired soft robotics system, with integrated self-actuating cardiac muscles on a hierarchically structured scaffold with flexible gold microelectrodes is reported. Inspired by the movement of living organisms, a batoid-fish-shaped substrate is designed and reported, which is composed of two micropatterned hydrogel layers. The first layer is a poly(ethylene glycol) hydrogel substrate, which provides a mechanically stable structure for the robot, followed by a layer of gelatin methacryloyl embedded with carbon nanotubes, which serves as a cell culture substrate, to create the actuation component for the soft body robot. In addition, flexible Au microelectrodes are embedded into the biomimetic scaffold, which not only enhance the mechanical integrity of the device, but also increase its electrical conductivity. After culturing and maturation of cardiomyocytes on the biomimetic scaffold, they show excellent myofiber organization and provide self-actuating motions aligned with the direction of the contractile force of the cells. The Au microelectrodes placed below the cell layer further provide localized electrical stimulation and control of the beating behavior of the bioinspired soft robot.

Place, publisher, year, edition, pages
Wiley-VCH Verlagsgesellschaft, 2018. Vol. 30, no 10, article id 1704189
Keyword [en]
bioinspiration, bioactuators, cardiac tissue engineering, flexible microelectrodes, hydrogels
National Category
Robotics
Identifiers
URN: urn:nbn:se:kth:diva-225058DOI: 10.1002/adma.201704189ISI: 000426720400001PubMedID: 29323433Scopus ID: 2-s2.0-85040627237OAI: oai:DiVA.org:kth-225058DiVA, id: diva2:1193973
Note

QC 20180328

Available from: 2018-03-28 Created: 2018-03-28 Last updated: 2018-03-28Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textPubMedScopus

Search in DiVA

By author/editor
Enrico, Alessandro
By organisation
Micro and Nanosystems
In the same journal
Advanced Materials
Robotics

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 1 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf