Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
AN INTRINSIC DEFINITION OF THE REES ALGEBRA OF A MODULE
KTH, School of Engineering Sciences (SCI), Mathematics (Dept.).ORCID iD: 0000-0001-8893-5211
2018 (English)In: Proceedings of the Edinburgh Mathematical Society, ISSN 0013-0915, E-ISSN 1464-3839, Vol. 61, no 1, p. 13-30Article in journal (Refereed) Published
Abstract [en]

This paper concerns a generalization of the Rees algebra of ideals due to Eisenbud, Huneke and Ulrich that works for any finitely generated module over a noetherian ring. Their definition is in terms of maps to free modules. We give an intrinsic definition using divided powers.

Place, publisher, year, edition, pages
CAMBRIDGE UNIV PRESS , 2018. Vol. 61, no 1, p. 13-30
Keyword [en]
Rees algebras, divided powers, bialgebras
National Category
Mathematics
Identifiers
URN: urn:nbn:se:kth:diva-225220DOI: 10.1017/S0013091516000547ISI: 000427513500002Scopus ID: 2-s2.0-85013439670OAI: oai:DiVA.org:kth-225220DiVA, id: diva2:1194982
Funder
Swedish Research Council, 2011-5599
Note

QC 20180404

Available from: 2018-04-04 Created: 2018-04-04 Last updated: 2018-04-04Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records BETA

Sædén Ståhl, Gustav

Search in DiVA

By author/editor
Sædén Ståhl, Gustav
By organisation
Mathematics (Dept.)
In the same journal
Proceedings of the Edinburgh Mathematical Society
Mathematics

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf