Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Characterization of Surface Passivation by Poly(methylsiloxane) for Dye-Sensitized Solar Cells Employing the Ferrocene Redox Couple
Show others and affiliations
2010 (English)In: The Journal of Physical Chemistry C, ISSN 1932-7447, E-ISSN 1932-7455, Vol. 114, no 23, p. 10551-10558Article in journal (Refereed) Published
Abstract [en]

One-electron outer-sphere redox couples, such as ferrocene/ferrocenium, are an interesting alternative to the iodide/triiodide redox couple that is normally employed in dye-sensitized solar cells (DSCs) because they should reduce the driving force needed to regenerate the dye. Unfortunately, one-electron redox couples also show enhanced recombination with photoinjected electrons, and methods to inhibit this recombination are needed for functioning DSCs. In this study, dye-sensitized titanium dioxide surfaces were passivated by a trichloromethylsilane reaction in order to decrease the fast recombination rates when using the ferrocene redox couple. The formation and binding of poly(methylsiloxane) on the dye-sensitized TiO(2) surface was verified with infrared spectroscopy and photoelectron spectroscopy. Photoelectrochemical characterization of the silanization method showed that the treatment decreased the recombination rate of photoinjected electrons with ferrocenium and thereby improved the efficiency of the DSC. Transient absorption spectroscopy revealed, however, that the poly(methylsiloxane) coatings slowed down the regeneration of the oxidized dye by the ferrocene and prevented the regeneration of some of the dye molecules.

Place, publisher, year, edition, pages
AMER CHEMICAL SOC , 2010. Vol. 114, no 23, p. 10551-10558
National Category
Chemical Sciences
Identifiers
URN: urn:nbn:se:kth:diva-225476DOI: 10.1021/jp100957pISI: 000278479700032Scopus ID: 2-s2.0-77953500306OAI: oai:DiVA.org:kth-225476DiVA, id: diva2:1195451
Funder
Swedish Energy Agency
Note

QC 20180416

Available from: 2018-04-05 Created: 2018-04-05 Last updated: 2018-04-16Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Search in DiVA

By author/editor
Cappel, Ute B.
In the same journal
The Journal of Physical Chemistry C
Chemical Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 6 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf