Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Multiscale Currents Observed by MMS in the Flow Braking Region
Austrian Acad Sci, Space Res Inst, Graz, Austria..
Austrian Acad Sci, Space Res Inst, Graz, Austria..
Austrian Acad Sci, Space Res Inst, Graz, Austria..
UPMC Univ Paris 06, Univ Paris Sud, Observ Paris, Ecole Polytech,CNRS,Lab Phys Plasmas, Paris, France..
Show others and affiliations
2018 (English)In: Journal of Geophysical Research - Space Physics, ISSN 2169-9380, E-ISSN 2169-9402, Vol. 123, no 2, p. 1260-1278Article in journal (Refereed) Published
Abstract [en]

We present characteristics of current layers in the off-equatorial near-Earth plasma sheet boundary observed with high time-resolution measurements from the Magnetospheric Multiscale mission during an intense substorm associated with multiple dipolarizations. The four Magnetospheric Multiscale spacecraft, separated by distances of about 50 km, were located in the southern hemisphere in the dusk portion of a substorm current wedge. They observed fast flow disturbances (up to about 500 km/s), most intense in the dawn-dusk direction. Field-aligned currents were observed initially within the expanding plasma sheet, where the flow and field disturbances showed the distinct pattern expected in the braking region of localized flows. Subsequently, intense thin field-aligned current layers were detected at the inner boundary of equatorward moving flux tubes together with Earthward streaming hot ions. Intense Hall current layers were found adjacent to the field-aligned currents. In particular, we found a Hall current structure in the vicinity of the Earthward streaming ion jet that consisted of mixed ion components, that is, hot unmagnetized ions, cold ExB drifting ions, and magnetized electrons. Our observations show that both the near-Earth plasma jet diversion and the thin Hall current layers formed around the reconnection jet boundary are the sites where diversion of the perpendicular currents take place that contribute to the observed field-aligned current pattern as predicted by simulations of reconnection jets. Hence, multiscale structure of flow braking is preserved in the field-aligned currents in the off-equatorial plasma sheet and is also translated to ionosphere to become a part of the substorm field-aligned current system.

Place, publisher, year, edition, pages
AMER GEOPHYSICAL UNION , 2018. Vol. 123, no 2, p. 1260-1278
National Category
Physical Sciences
Identifiers
URN: urn:nbn:se:kth:diva-225750DOI: 10.1002/2017JA024686ISI: 000427568000016Scopus ID: 2-s2.0-85042177325OAI: oai:DiVA.org:kth-225750DiVA, id: diva2:1196468
Note

QC 20180410

Available from: 2018-04-10 Created: 2018-04-10 Last updated: 2018-04-10Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records BETA

Lindqvist, Per-Arne

Search in DiVA

By author/editor
Lindqvist, Per-Arne
By organisation
Space and Plasma Physics
In the same journal
Journal of Geophysical Research - Space Physics
Physical Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 15 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf