Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Bioinspired capsules based on nanocellulose, xyloglucan and pectin - The influence of capsule wall composition on permeability properties
KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center. KTH Royal Inst Technol, Wallenberg Wood Sci Ctr, SE-10044 Stockholm, Sweden. KTH Royal Inst Technol, Dept Fiber & Polymer Technol, SE-10044 Stockholm, Sweden..
2018 (English)In: Acta Biomaterialia, ISSN 1742-7061, E-ISSN 1878-7568, Vol. 69, p. 196-205Article in journal (Refereed) Published
Abstract [en]

Materials based on renewable biopolymers, selective permeability and stimuli-responsive release/loading properties play an important role in biomedical applications. Here, in order to mimic the plant primary cell-wall, microcapsules have been fabricated using cell wall polysaccharides, namely pectin, xyloglucan and cellulose nanofibers. For the first time, a large amount of xyloglucan was successfully included in such capsules. These capsules demonstrated stimuli-responsive (ON/OFF) permeability and biocompatibility. The live cell staining revealed that the microcapsules' surface enhanced cell growth and also the non-toxic nature of the microcapsules. In water, the microcapsules were completely and partially permeable to fluorescent dextrans with an average molecular weight of 70 kDa (hydrodynamic diameter of ca. 12 nm) and 2000 kDa (ca. 54 nm), respectively. On the other hand, the permeability dropped quickly when the capsules were exposed to 250 mM NaCl solution, trapping a fraction of the 70 kDa dextrans in the capsule interior. The decrease in permeability was a direct consequence of the capsule-wall composition, i.e. the presence of xyloglucan and a low amount of charged molecules such as pectin. The low permeability of capsules in saline conditions (and in a model biological medium), combined with a capsule wall that is made from dietary fibers only, potentially enables their use in biological applications, such as colon targeted delivery in the gastro-intestinal tract. 

Place, publisher, year, edition, pages
ELSEVIER SCI LTD , 2018. Vol. 69, p. 196-205
Keywords [en]
Biomimetic microcapsules, Cellulose nanofiber, Xyloglucan, Pectin, Switchable permeability, Layer-by-layer
National Category
Materials Engineering
Identifiers
URN: urn:nbn:se:kth:diva-225719DOI: 10.1016/j.actbio.2018.01.003ISI: 000427334100015PubMedID: 29341931OAI: oai:DiVA.org:kth-225719DiVA, id: diva2:1196616
Funder
Swedish Foundation for Strategic Research , ICA14-0045
Note

QC 20180410

Available from: 2018-04-10 Created: 2018-04-10 Last updated: 2018-04-10Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textPubMed

Search in DiVA

By author/editor
Paulraj, T.Riazanova, A. V.Svagan, A. J.
By organisation
Wallenberg Wood Science CenterFibre- and Polymer Technology
In the same journal
Acta Biomaterialia
Materials Engineering

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 169 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf