Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Sustainable implementation of future smart road solutions: a case study on the electrified road
KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Structural Engineering and Bridges.ORCID iD: 0000-0001-9504-2008
KTH, School of Architecture and the Built Environment (ABE), Architecture, Architectural Technologies. KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Structural Engineering and Bridges.ORCID iD: 0000-0001-7333-1140
KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Structural Engineering and Bridges.ORCID iD: 0000-0003-3968-6778
2017 (English)In: Proceedings of the 10th International Conference on the Bearing Capacity of Roads, Railways and Airfields (BCRRA 2017) / [ed] Andreas Loizos, Imad Al-Qadi, Tom Scarpas, Athens, Greece: CRC Press, 2017Conference paper, Oral presentation with published abstract (Refereed)
Abstract [en]

An important feature of a future smart or multifunctional road is that an intrinsic integration of different new advances into the practical roads should be achieved, in terms of such as Car-to-Road communication, energy harvesting, autonomous driving or on-the-road charging. However, our current engineering and research communities do not necessarily allow for an optimal development of such integrated systems. To fill some of the knowledge gaps from infrastructure point of view, this research is focusing on a specific case of the electrified road (also called ‘eRoad’) that allows for on-the-road charging, in which the consequences and possible modifications of the road infrastructure are considered. Some preliminary analysis results are presented in this paper, from which it has been found that such kind of the integration could indeed influence the service performance of individual components of the whole system, while further studies should be carried out to ensure the implementation of these smart technologies is ultimately sustainable.

Place, publisher, year, edition, pages
Athens, Greece: CRC Press, 2017.
National Category
Infrastructure Engineering
Research subject
Civil and Architectural Engineering
Identifiers
URN: urn:nbn:se:kth:diva-226674ISBN: 1351585789 (print)OAI: oai:DiVA.org:kth-226674DiVA, id: diva2:1201131
Conference
10th International Conference on the Bearing Capacity of Roads, Railways and Airfields
Note

QC 20180507

Available from: 2018-04-24 Created: 2018-04-24 Last updated: 2018-05-07Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Conference webpage

Authority records BETA

Chen, FengBalieu, RomainKringos, Nicole

Search in DiVA

By author/editor
Chen, FengBalieu, RomainKringos, Nicole
By organisation
Structural Engineering and BridgesArchitectural Technologies
Infrastructure Engineering

Search outside of DiVA

GoogleGoogle Scholar

isbn
urn-nbn

Altmetric score

isbn
urn-nbn
Total: 48 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf