Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
A One-Pot Biomimetic Synthesis of Selectively Functionalized Lignins from Monomers: A Green Functionalization Platform
KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Wood Chemistry and Pulp Technology. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.ORCID iD: 0000-0003-4266-0720
KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center. Department of Civil, Chemical, Environmental and Materials Engineering. Universita´ di Bologna.
KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Wood Chemistry and Pulp Technology. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
2018 (English)In: Green Chemistry, ISSN 1463-9262, E-ISSN 1463-9270Article in journal (Refereed) Published
Abstract [en]

Lignin is the most abundant renewable source of phenolic compound with great application potential in renewable materials, biofuels and platform chemicals. Current technology for producing cellulose-rich fibers co-produces heterogeneous lignin, which includes an untapped source of monomeric phenolics. One such monomer also happen to be the main monomer in soft wood lignin biosynthesis, namely coniferyl alcohol. Herein, we investigate the potential of coniferyl alcohol as a platform monomer for the biomimetic production of tailored functionalized oligolignols with desirable properties for material synthesis. Accordingly, a bifunctional molecule with at least one carboxyl-ended functionality is included with coniferyl alcohol in biomimetic lignin synthesis to, in one-pot, produce a functionalized lignin. The functionalization mechanism is a nucleophilic addition reaction to quinone methide intermediate of lignin polymerization. The solvent systems applied were pure water or 50% aqueous acetone. Several bi-functional molecules differing in the second functionality were successfully inserted in the lignin demonstrating the platform component of this work. Detailed characterizations were performed by a combination of NMR techniques which include 1H NMR, COSY-90, 31P NMR, 13C NMR, 13C APT, HSQC, HMBC and HSQC TOCSY. Excellent selectivity towards benzylic carbon and high functionalization degree were noted. The structure of lignin was tailored through solvent system choice, with the 50% aqeuous acetone producing a skeletal structure favorable for high functionalization degrees. Finally, material concepts are demonstrated using classical Thiol-ene- and Diels Alder- chemistries to show potential for thermoset- and thermoplastic- concepts, respectively. The functionalization concept presents unprecedentent opportunities for green production of lignin-based recyclable biomaterials.

Place, publisher, year, edition, pages
Royal Society of Chemistry, 2018.
National Category
Wood Science
Research subject
Fibre and Polymer Science
Identifiers
URN: urn:nbn:se:kth:diva-227163DOI: 10.1039/C8GC01145AOAI: oai:DiVA.org:kth-227163DiVA, id: diva2:1203304
Funder
Knut and Alice Wallenberg Foundation
Note

QC 20180509

Available from: 2018-05-03 Created: 2018-05-03 Last updated: 2018-05-14Bibliographically approved
In thesis
1. Fundamental Aspects of Lignin Carbohydrate Complexes (LCC): Mechanisms, Recalcitrance and Material concepts
Open this publication in new window or tab >>Fundamental Aspects of Lignin Carbohydrate Complexes (LCC): Mechanisms, Recalcitrance and Material concepts
2018 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Covalent bonds between lignin and carbohydrates, forming a matrix referred to as lignin carbohydrate complexes (LCC), remain one of the most controversial topics in wood chemistry. A key issue is whether they are formed during chemical and mechanical pretreatments of the compact wood structure or actually present in wood prior to isolation. A fundamental understanding of their origin and reactivity is vital to unravel their role in wood formation and recalcitrance. Recalcitrance, specifically, has affected the successful development of effective and clean fractionation of wood polymers.

To address the above-mentioned concerns, we have developed a novel mild universal and quantitative fractionation protocol of LCC that, when combined with robust spectroscopic analytical tools, including a variety of NMR techniques, GC MS and SEC, reveals deeper insights into the molecular structure of LCC.

This method was applied to both hardwood and softwood LCCs and revealed interesting findings on molecular-level regulatory mechanism for lignin carbohydrate (LC) bond formation such as the role of acetylation in hemicelluloses. Moreover, the role of LC bonds on recalcitrance during subcritical water extraction was unveiled.

Bio-mimicking in vitro lignin polymerization was adopted to investigate whether LC bonds are native or formed during isolation from wood. For the first time, direct evidence lending support that they are formed in wood cells was demonstrated, thus corroborating the mechanisms suggested in the literature.  

Furthermore, based on the overall LCC study, we suggest a sequence for how LC bonds may form in vitro.

Finally, of special interest to material science, the unveiled LC bond formation mechanism inspired a green, biomimetic, one-pot synthesis of functionalized lignin starting from monomeric components. Excellent selectivity of functionalization is reported and production of lignin-based recyclable materials, based on the premise of this functionalization philosophy, is discussed.

Abstract [sv]

Existensen av kovalenta bindningar mellan lignin och kolhydrater, som bildar en matris som kallas ligninkolhydratkomplex (LCC), förblir ett av de mest kontroversiella ämnena inom träkemi. En viktig fråga är om de bildas under isolering eller faktiskt finns närvarande i trä före isolering (där isolering innefattar kemiska och mekaniska förbehandlingar av den kompakta trästrukturen). Djupare insikter om deras ursprung och reaktivitet är avgörande för att utröna deras roll i träbildning och deras bidrag till extraktionssvårighet. Lignins bidrag till extraktionssvårighet är av särskilt intresse, då den länge hämmat den framgångsrika utvecklingen av effektiv och ren fraktionering av träpolymerer.För att ta itu med ovan nämnda problem har vi utvecklat ett nytt, milt, universellt och kvantitativt fraktioneringsprotokoll av LCC som i kombination med robusta spektroskopiska analysverktyg (vilka innefattar ett flertal NMR-tekniker samt GC MS och SEC) ger djupare insikt om LCCs molekylära struktur. Detta protokoll applicerades på både barr- och lövved och ledde till intressanta upptäckter beträffande de molekylära regler-mekanismerna för bildandet av lignin-kolhydrat-bindningar (LC). Dessa upptäckter berörde även vikten av hemicellulosors acetylering. Vidare presenterades hur LC-bindningar bidrar till extractionssvårighet under subkritisk vattenutvinning.Biomimetisk in vitro-ligninpolymerisation användes för att vidare undersöka huruvida LC-bindningar finns närvarande innan isolering av trä eller bildas under denna. I denna avhandling har för första gången direkta bevis till stöd för att de bildas nativt i träceller presenterats. Detta korroborerar tidigare mekanismer som föreslagits i litteraturen. Vidare erhölls djupare insikter på molekylär nivå för att föreslår en sekvens för hur LC-bindningar bildas in vitro.Slutligen, av särskilt intresse för materialvetenskap, inspirerade den framtagna LC-bindningsmedelsmekanismen en grön, biomimetisk enstegssyntes av funktionaliserat lignin utgående från monomera komponenter. Utmärkt funktionaliseringsselektivitet uppvisades och en produktion av ligninbaserade återvinningsbara material baserade på denna funktionaliseringsfilosofi diskuteras.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2018. p. 95
Series
TRITA-CBH-FOU ; 2018:18
Keyword
Lignin Carbohydrates Complexes; Phenyl Glycosides; Benzyl Ethers; Benzyl and γ-esters; Universal Mild Quantitative fractionation; LCC mechanism formation, Extracellular lignin; Dehydogenation polymer; Autohydrolysis; Recalcitrance; Acetylation role; HSQC, HMBC, HSQC-TOCSY, 13C, 31P NMR, Thioacidolysis-GC; SEC; Green, Biomimetic, One-pot-lignin functionalization; Lignin platform material.
National Category
Wood Science
Research subject
Fibre and Polymer Science
Identifiers
urn:nbn:se:kth:diva-227865 (URN)978-91-7729-771-0 (ISBN)
Public defence
2018-06-11, F3, Lindstedtsvägen 26, Stockholm, 10:00 (English)
Opponent
Supervisors
Note

QC 20180514

Available from: 2018-05-14 Created: 2018-05-14 Last updated: 2018-05-21Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full text

Search in DiVA

By author/editor
Giummarella, NicolaGioia, ClaudioLawoko, Martin
By organisation
Wood Chemistry and Pulp TechnologyWallenberg Wood Science Center
In the same journal
Green Chemistry
Wood Science

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 12 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf