Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
3D Fluid-Structure Interaction Simulation of Aortic Valves Using a Unified Continuum ALE FEM Model
KTH, School of Computer Science and Communication (CSC), Computational Science and Technology (CST).
KTH, School of Computer Science and Communication (CSC), Computational Science and Technology (CST).ORCID iD: 0000-0002-1695-8809
KTH, School of Computer Science and Communication (CSC), Computational Science and Technology (CST).ORCID iD: 0000-0002-5020-1631
KTH, School of Computer Science and Communication (CSC), Computational Science and Technology (CST).ORCID iD: 0000-0003-4256-0463
2018 (English)In: Frontiers in Physiology, ISSN 1664-042X, E-ISSN 1664-042X, Vol. 9, article id 363Article in journal (Refereed) Published
Abstract [en]

Due to advances in medical imaging, computational fluid dynamics algorithms and high performance computing, computer simulation is developing into an important tool for understanding the relationship between cardiovascular diseases and intraventricular blood flow. The field of cardiac flow simulation is challenging and highly interdisciplinary. We apply a computational framework for automated solutions of partial differential equations using Finite Element Methods where any mathematical description directly can be translated to code. This allows us to develop a cardiac model where specific properties of the heart such as fluid-structure interaction of the aortic valve can be added in a modular way without extensive efforts. In previous work, we simulated the blood flow in the left ventricle of the heart. In this paper, we extend this model by placing prototypes of both a native and a mechanical aortic valve in the outflow region of the left ventricle. Numerical simulation of the blood flow in the vicinity of the valve offers the possibility to improve the treatment of aortic valve diseases as aortic stenosis (narrowing of the valve opening) or regurgitation (leaking) and to optimize the design of prosthetic heart valves in a controlled and specific way. The fluid-structure interaction and contact problem are formulated in a unified continuum model using the conservation laws for mass and momentum and a phase function. The discretization is based on an Arbitrary Lagrangian-Eulerian space-time finite element method with streamline diffusion stabilization, and it is implemented in the open source software Unicorn which shows near optimal scaling up to thousands of cores. Computational results are presented to demonstrate the capability of our framework.

Place, publisher, year, edition, pages
Frontiers Media S.A., 2018. Vol. 9, article id 363
Keywords [en]
fluid-structure interaction, finite element method, Arbitrary Lagrangian-Eulerian method, parallel algorithm, blood flow, patient specific heart model
National Category
Physiology
Identifiers
URN: urn:nbn:se:kth:diva-226752DOI: 10.3389/fphys.2018.00363ISI: 000430119500001Scopus ID: 2-s2.0-85045511659OAI: oai:DiVA.org:kth-226752DiVA, id: diva2:1203566
Funder
Swedish Foundation for Strategic Research Swedish Research Council
Note

QC 20180503

Available from: 2018-05-03 Created: 2018-05-03 Last updated: 2018-05-03Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records BETA

Jansson, JohanJansson, NiclasHoffman, Johan

Search in DiVA

By author/editor
Spühler, Jeannette H.Jansson, JohanJansson, NiclasHoffman, Johan
By organisation
Computational Science and Technology (CST)
In the same journal
Frontiers in Physiology
Physiology

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 2453 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf