Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
A time-spectral approach to numerical weather prediction
KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
KTH, School of Electrical Engineering (EES), Fusion Plasma Physics.
2018 (English)In: Computer Physics Communications, ISSN 0010-4655, E-ISSN 1879-2944, Vol. 226, p. 127-135Article in journal (Refereed) Published
Abstract [en]

Finite difference methods are traditionally used for modelling the time domain in numerical weather prediction (NWP). Time-spectral solution is an attractive alternative for reasons of accuracy and efficiency and because time step limitations associated with causal CFL-like criteria, typical for explicit finite difference methods, are avoided. In this work, the Lorenz 1984 chaotic equations are solved using the time-spectral algorithm GWRM (Generalized Weighted Residual Method). Comparisons of accuracy and efficiency are carried out for both explicit and implicit time-stepping algorithms. It is found that the efficiency of the GWRM compares well with these methods, in particular at high accuracy. For perturbative scenarios, the GWRM was found to be as much as four times faster than the finite difference methods. A primary reason is that the GWRM time intervals typically are two orders of magnitude larger than those of the finite difference methods. The GWRM has the additional advantage to produce analytical solutions in the form of Chebyshev series expansions. The results are encouraging for pursuing further studies, including spatial dependence, of the relevance of time-spectral methods for NWP modelling. Program summary: Program Title: Time-adaptive GWRM Lorenz 1984 Program Files doi: http://dx.doi.org/10.17632/4nxfyjj7nv.1 Licensing provisions: MIT Programming language: Maple Nature of problem: Ordinary differential equations with varying degrees of complexity are routinely solved with numerical methods. The set of ODEs pertaining to chaotic systems, for instance those related to numerical weather prediction (NWP) models, are highly sensitive to initial conditions and unwanted errors. To accurately solve ODEs such as the Lorenz equations (E. N. Lorenz, Tellus A 36 (1984) 98–110), small time steps are required by traditional time-stepping methods, which can be a limiting factor regarding the efficiency, accuracy, and stability of the computations. Solution method: The Generalized Weighted Residual Method, being a time-spectral algorithm, seeks to increase the time intervals in the computation without degrading the efficiency, accuracy, and stability. It does this by postulating a solution ansatz as a sum of weighted Chebyshev polynomials, in combination with the Galerkin method, to create a set of linear/non-linear algebraic equations. These algebraic equations are then solved iteratively using a Semi Implicit Root solver (SIR), which has been chosen due to its enhanced global convergence properties. Furthermore, to achieve a desired accuracy across the entire domain, a time-adaptive algorithm has been developed. By evaluating the magnitudes of the Chebyshev coefficients in the time dimension of the solution ansatz, the time interval can either be decreased or increased.

Place, publisher, year, edition, pages
Elsevier, 2018. Vol. 226, p. 127-135
Keywords [en]
Chebyshev polynomials, NWP, Spectral, Time-spectral, Weighted residual methods
National Category
Physical Sciences
Identifiers
URN: urn:nbn:se:kth:diva-227591DOI: 10.1016/j.cpc.2018.01.010ISI: 000428483000011Scopus ID: 2-s2.0-85042148545OAI: oai:DiVA.org:kth-227591DiVA, id: diva2:1204949
Note

QC 20180509

Available from: 2018-05-09 Created: 2018-05-09 Last updated: 2018-05-09Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Search in DiVA

By author/editor
Scheffel, JanLindvall, Kristoffer
By organisation
Fusion Plasma Physics
In the same journal
Computer Physics Communications
Physical Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 25 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf